

Maestro

Cloud Management Solution

Architecture Overview

Developer’s Guide

June 2023

M3DG-07

Version .2.3

Maestro – Architecture Overview

 2

Contents

PREFACE .. 5

ABOUT THIS GUIDE ... 5

AUDIENCE ... 5

THE STRUCTURE OF THE GUIDE ... 5

1 INTRODUCTION TO MAESTRO .. 6

1.1 MAESTRO MAIN FEATURES AND CAPABILITIES.. 7

1.2 DEPLOYMENT MODELS .. 7

1.3 PROVISIONING MODES .. 8

1.4 TECHNOLOGY STACK AND INTEGRATIONS .. 9

1.5 MAESTRO SAAS PERMISSIONS .. 10

2 MAESTRO COMPONENTS ... 11

3 MAESTRO FRAMEWORK... 12

3.1 API-FIRST APPROACH ... 12

3.1.1 Maestro SDK .. 12

3.1.2 Ansible and Dynamic Inventory ... 13

3.1.3 Dynamic UI... 13

3.2 ACCESS CONTROL ... 13

3.2.1 Role-Based Access Control ... 13

3.2.2 License Management ... 15

3.3 ORGANIZATION STRUCTURE SUPPORT .. 16

3.3.1 Organization Units ... 16

3.3.2 Infrastructure Control .. 16
Infrastructure Metrics .. 17
Resource Tags .. 19

3.3.3 Service Catalog .. 22

3.4 BILLING AND QUOTAS ... 24

3.4.1 Quotas ... 24
Daily resource quotas .. 24
Monthly tenant quotas .. 24

3.4.2 Billing ... 25

3.4.3 Price Calculator .. 26

3.5 USER COMMUNICATION .. 27

3.5.1 Notifications .. 27

3.5.2 Event Audit .. 29

3.5.3 Jobs .. 29

4 PRIVATE AGENT.. 30

4.1 VMWARE PRIVATE AGENT .. 30

4.1.1 vCloudDirector Data Model ... 30
Organizations ... 31
Virtual Data Center (VDC) .. 31
Catalogs ... 32
vApp Templates and vApp Applications... 32

4.1.2 Working with VMWare Private Agent ... 32
Available Instance Capacities ... 32

Maestro - API Reference Guide

 3

Available and Planned Operations with Virtual Machines ... 33
Disaster Recovery Scenario .. 33

5 ON-PREMISE SOLUTION ... 35

6 CLOUD ABSTRACTION LAYER AND CLOUD INTEGRATIONS ... 36

6.1 INTEGRATION WITH AWS .. 36

6.1.1 Pre-requisites ... 36

6.1.2 Expected Outcome ... 36

6.2 INTEGRATION WITH MICROSOFT AZURE .. 37

6.2.1 Account with Azure EA subscription .. 37
6.2.1.1 Pre-requisites ... 37
Expected Outcome ... 38

6.2.2 Account with Azure CSP subscription ... 38
Pre-requisites ... 38
Expected Outcome ... 39

6.3 INTEGRATION WITH GOOGLE CLOUD PLATFORM .. 39

6.3.1 Pre-requisites ... 40

6.3.2 Expected Outcome ... 40

6.4 INTEGRATION WITH OPENSTACK .. 40

6.4.1 Pre-Requisites .. 40

6.4.2 Expected Outcome ... 41

7 EVENT-DRIVEN ARCHITECTURE .. 42

7.1 EVENTS AUDIT ... 42

7.2 EVENT-DRIVEN ARCHITECTURE .. 42

8 M3 SDK .. 43

8.1 CONFIGURATION .. 44

8.1.1 Maven Configuration for Maestro JAVA SDK ... 44

8.1.2 Entry Point ... 44

8.1.3 Typical Working Scenario .. 44

8.1.4 Maestro SDK Structure .. 45

8.2 AUTHORIZATION ALGORITHM ... 45

9 DYNAMIC UI ... 47

9.1 ANGULAR 14 ... 47

9.2 NATIVE SCRIPT ... 47

10 MAESTRO DATABASES .. 48

10.1 MONGODB ADVANTAGES .. 48

10.2 MONGODB CONSTRAINS ... 48

10.3 MONGODB USAGE IN MAESTRO ... 48

11 SUPPORT AND DEVOPS TOOLS ... 50

11.1 TERRAFORM AND TERRAFORM PROVIDER .. 50

11.1.1 Integration with Terraform .. 50

11.1.2 Terraform Provider for Maestro .. 52

11.2 CHEF .. 54

Maestro - API Reference Guide

 4

11.2.1 Configuring Chef .. 54

11.2.2 Work Principles .. 56

11.3 ANSIBLE .. 57

ANNEX A – MAESTRO SAAS PERMISSIONS ... 60

EO_ORCHESTRATOR .. 60

EO_INSTANCE .. 60

EO_API ... 60

EO_LAMBDA .. 60

ANNEX B – ANSIBLE CLIENT .. 66

ANSIBLE CLIENT ... 66

DOWNLOADING ANSIBLE CLIENT ... 66

EXECUTING ANSIBLE CLIENT ... 67

TABLE OF FIGURES ... 69

VERSION HISTORY .. 71

Maestro – Architecture Overview

 5

PREFACE

ABOUT THIS GUIDE

The guide describes the main architecture components, approaches and tools, used by Maestro

application.

AUDIENCE

The guide is targeted on the developers and architects, working with Maestro application.

THE STRUCTURE OF THE GUIDE

The guide consists of the following sections:

1. Introduction to Maestro – The section provides the general overview of the solution, its main

capabilities, delivery models, integrations and permissions.

2. Maestro Components – The section provides the high-level overview of Maestro components

3. Maestro Framework – the section provides the description of Maestro framework, its components,

related processes

4. Private Agent – the section provides the details for Maestro private agent, which enables Maestro

work with OpenStak and VMware-based private regions.

5. On-Premise Solution – the section describes the on-premise installation of Maestro.

6. Cloud Abstraction Layer – the section covers the main principles of integration with different cloud

providers.

7. Event-Driven Architecture – the section descrbes the events-driven approach used within Maestro

and events audit principles.

8. M3 SDK – the section describes the main points of M3 SDK configuration and algorhythms.

9. Dynamic UI – the section decribes the specifcis of Maestro UI building, and the respective tools

10. Maestro Databases – the section describes the databases used within Maestro, and the specifcis

of MongoDB usage.

11. Support and DevOps tools – the section describes tools and approaches used for Maestro support

and DevOps operations.

Maestro – Architecture Overview

 6

1 INTRODUCTION TO MAESTRO

Maestro application – is a fault-tolerant system for managing distributed hyper-converged virtual

infrastructures. The system is based on event-driven architecture leveraging AMQP protocol (Advanced

Message Queuing Protocol), powered by RabbitMQ software application for working with message

queuing.

The system contains a private agent component, which is based on a cloud abstraction level. Due to this,

the differences, derived from specifics of rendering services by various cloud providers, are hidden.

The cloud abstraction layer allows to manage different virtualizer types via the same code:

• OpenStack (Nova-API)

• CloudStack (CloudStack API)

• Huawei (Open API)

• VMware (vCloudDirector)

• VMware (VSphere)

The application is designed to work in a geographically distributed system, under high load and high

availability (99.999%) requirements.

Figure 1 – Maestro architecture framework

Maestro – Architecture Overview

 7

All system components are the software manufacturer’s in-house development, except for:

• RabbitMQ

• MongoDB (used as a “database” component)

• API of supported public virtual cloud providers and private cloud creation platforms

The main external service that ensures the work of the Maestro application – AWS Lambda.

1.1 MAESTRO MAIN FEATURES AND CAPABILITIES

Maestro is a Cloud Management solution which enables effective, unified, and controllable self-service

access to hybrid virtual infrastructures, based on both public and private clouds.

The solution provides users with role-based access to both web and native mobile applications (for Android

and Apple). It includes a wide range of events audit, optimization, costs, and billing reports to enable high

transparency, accountability, and pro-active optimization for your resources in Cloud.

Maestro purpose and functionality is based on the three pillars, each allowing to establish a high level of

virtual infrastructures provisioning, monitoring, and audit:

• Orchestration, provisioning, brokerage: Maestro provides a single entry point for creating,

reviewing, and managing virtual resources hosted at one or several Cloud providers, both public or

private, in a unified way.

• Costs visibility, audit, reduction: Maestro includes a set of tools enabling costs visibility, review

and control in a convenient unified way for all supported cloud providers.

• Governance, risk management, compliance (GRC): With access control, inventory, monitoring,

automation and other tools, Maestro is able to effectively support your solutions for modern

enterprise-level demands and challenges in GRC.

Maestro has several interfaces for communicating with different types of users:

• Maestro User Interface – a web and mobile application providing users with access to Maestro

capabilities.

• Maestro SDK – a programming interface to enable automation and integration with Maestro user

capabilities.

• Maestro Admin Interface – a CLI tool available only to Maestro administrative users and allowing

Maestro configuration (clouds, tenants, users, etc).

1.2 DEPLOYMENT MODELS

Maestro application can be provided in one of three configurations (deployment models), each of them

contains a certain set of functionalities for the end user.

• The Standard Deployment model allows users to get access to public virtual cloud providers

(AWS, Microsoft Azure, Google Cloud Platform). Available functions are:

o Unified and simply organized reporting for all customer’s resources across all public clouds

they use

o A set of analytics tools for all virtual resources under the customer’s account

o Quotas management tool, that allows to set up the monthly expense limits for virtual

infrastructures

Maestro – Architecture Overview

 8

o Alerts and notifications that will inform the customer on the significant events on their

resources

• The Professional Deployment model allows users to get access to public virtual cloud providers

(AWS, Microsoft Azure, Google Cloud Platform). Available functions are:

o All facilities included in the Standard model

o Virtual servers management

o Using “Infrastructure as Code” tools - Terraform, AWS CloudFormation

o Auto configuration

• The Enterprise model allows users to get access to public virtual cloud providers (AWS, Microsoft

Azure, Google Cloud Platform) and private regions located on OpenStack and VMware platforms.

o All functions included in the Professional Deployment model are available, and applicable

to both public and private clouds.

1.3 PROVISIONING MODES

The Maestro application can be provisioned to the users in one of the following options:

• SaaS (Software as a Service). The software is hosted in cloud and is provided to the user by

subscription. The user can connect his account to the application and get access to the functionality

within the requested deployment model.

• SaaS + Privat Agent. The agent is installed in a user’s private region (OpenStack or VMware) to

enable Maestro control over it. The agent ensures that Maestro, hosted in cloud, is connected to

the customer’s private cloud. Due to agent settings, Maestro receives only the information,

approved by the customer. If the customer also has infrastructures in public clouds, they can be

added to Maestro and managed according to the requested deployment model.

• On Premise. The Maestro application is installed locally on an isolated instance in the customer’s

enterprise data center.

Innovative in the On Premise model is the fact that the cloud-based application can be installed in a closed

perimeter, without any other cloud services installed. The Maestro application is deployed in private clouds

and is focused on protecting the management perimeter and preventing interactions with external cloud

service providers. It is achieved due to the correct level of abstractions and a special application

construction procedure and the ability to install the system in a closed perimeter without access.

Maestro – Architecture Overview

 9

1.4 TECHNOLOGY STACK AND INTEGRATIONS

Maestro uses the following integrations and third-party tools for its core elements:

M3
Component

Third-Party
Component Version

M3Server

Java (Amazon
Corretto)

OpenJDK 64-Bit Server VM Corretto-11.0.17.8.1 (build
11.0.17+8-LTS)

Python 3.9

Monogo Java Driver 4.0.6

MongoDB 5.0.9

Terraform 0.14.7, 0.15.1

RabbitMQ Java Client 5.9.0

M3Admin

Python 3.9

AWS-Syndicate 3.8

m3UI part

Angular 14.5.2

primeng 14.1.2

rxjs 6.6.7

seamless-immutable 7.1.2

M3 Native part nativescript/angular 13.0.1

OnPrem

MinIO minio/minio:RELEASE.2020-03-05T01-04-19Z

Vault vault:1.3.2

Monogo Java Driver 4.0.6

MongoDB mongo:5.0.9

AWS SDK 1.11.785, 2.13.19

RabbitMQ Java Client 5.9.0

RabbitMQ rabbitmq:3-management

Dagger 2.27

Spring Boot 2.3.10.RELEASE

Spring 5.2.14.RELEASE

Syndicate plugin 1.8.0

Maestro – Architecture Overview

 10

1.5 MAESTRO SAAS PERMISSIONS

To work correctly, Maestro SaaS needs a specific set of permissions on the AWS account to where it is

deployed.

There are three roles Maestro uses:

• eo_orchestrator – the main Maestro engine

• eo_instance – for Maestro server and Lambdas processing

• eo_api – for Modular (admin) API

• eo_lambda – for Lambdas processing

The Maestro permissions include those for the following services:

• AWS API Gateway

• AWS Lambda

• AWS SNS

• AWS S3

• AWS DynamoDB

• AWS Kinesis

• AWS Cognito

• AWS EC2

• AWS CloudWatch

• AWS CloudFront

• AWS Elastic Beanstalk

• AWS CloudFormation

• AWS Auto Scaling

• AWS STS

• AWS SSM

• AWS Athena

• Working with State Machines

For Maestro Admin (Modular) Tool, a trusted relationship document is needed in order to enable its

access to the necessary tenants/accounts. For this, the home account should be specified as a trusted

identity with the sts:AssumeRole permission.

In addition, two policies should be set up: one for creating resources and one - for removing. They affect

the following services:

• AWS IAM

• AWS CloudWatch

• AWS SNS

• AWS EC2

• AWS STS

• AWS S3

The details of all the policies are given in Annex A - Maestro Permissions.

Maestro – Architecture Overview

Maestro 11

2 MAESTRO COMPONENTS

Maestro is a complex system, using a big set of components, facing specific needs and tasks of the

application.

Figure 2 – Maestro components scheme

The main components of the solution are:

• Maestro Framework, allows to create applications, effective both in Lambda-based SaaS model

and as on-premise solutions.

The framework is based on Inversion of Control principle, and uses Spring and Dagger frameworks.

• Private agent – an application, allowing Maestro control over OpenStack and VMware-based

private regions.

• On-Premise Installation – Maestro application, adapted for installing on customer’s side.

• Cloud Abstraction Layer – the part of Maestro logic, responsible for integration with public cloud

providers..

• Event-Driven Architecture – the set of components, responsible for tracking and interpreting the

events in infrasturctures supported by Maestro.

• Maestro SDK – An SDK, enabling Maestro components integration.

• Dynamic UI – The effective dynamic User Interface, based on Angular 14 and Native Script.

• Maestro Databases – Maestro uses MongoDB and DynamoDB for its purposes.

Maestro – Architecture Overview

Maestro 12

• Support and DevOps tools – the set of tools, enabling effective solution support and automation,

include Chef, Ansible, and Terraform.

3 MAESTRO FRAMEWORK

Maestro is a framework that allows to create applications, effective both in Lambda-based SaaS model and

as on-premise solutions.

The framework is based on Inversion of Control principle and uses Spring and Dagger frameworks. Once

Spring is typically used for solid applications, Dagger is convenient when the code is split into AWS Lambda

functions.

Once the solution is Lambda-based, Spring framework is not effective from Lambda functions start time

perspective. To enable higher effectiveness and productivity, Dagger framework is used to combine all

elements of the system.

3.1 API-FIRST APPROACH

As part of the Maestro system, we follow the concept of API First.

Such a concept implies that at the beginning of any application development phase a certain API should

be created. Then, on top of this API, we develop additional necessary modules.

In such a way the Maestro API was implemented, providing Maestro SDK as an additional module on top

of it.

3.1.1 Maestro SDK

Initially the Maestro functionality is supported in the Maestro SDK, and only then it is implemented on the

UI. Thus, SDK is the keystone for all Maestro functionality.

Maestro SDK is based on JSON RPC protocol - a remote procedure call protocol encoded in JSON. The

protocol is similar to XML-RPC and defines a few data types and commands. JSON-RPC allows for

notifications (data sent to the server that does not require a response) and for multiple calls to be sent to

the server which may be answered out of order.

Based on this protocol, a simple and flexible working SDK architecture was created.

The user, working with Maestro SDK, contains a client. The client contains some managers. Managers

contain some methods. The client is a ready-made entity that can do anything. Each of managers is

responsible for a certain task, i.e. a certain manager for reporting, a manager for a private cloud, a manager

for working with Terraform, etc..

In case a completely new functionality should be added in the system, a new manager is created. This

manager is responsible for a specific new function. The methods required for performing this function are

included to this manager as well.

The JSON RPC protocol is used in such a case, allowing to rapidly expand the functionality. Maestro SDK

collects the necessary data and sends it to a server via HTTP or RabbitMQ protocols (both are supported

in Maestro SDK). The server processes these requests and returns responses.

Security of data transfer is ensured by the AES encryption.

Maestro – Architecture Overview

Maestro 13

3.1.2 Ansible and Dynamic Inventory

Ansible is an automation system for provisioning and configuring infrastructure, allowing to install software

on virtual machines. It can also manage large clusters of VMs on different cloud providers.

Maestro provides the possibility to generate a dynamically assembled list of virtual machines via API that

is used by Ansible DI via self-service.

Ansible Dynamic inventory is a tool allowing setting up configuration for several instances. It requires a list

of instances to be configured. Having the necessary list, Ansible can start working with it to configure the

given instances.

Together with other Maestro features, the product allows solving task which can be covered by Ansible

Tower.

Find more details in the Ansible section.

3.1.3 Dynamic UI

API First approach is engaged in creating Maestro dynamic UI. Dynamic forms concept was implemented

based on such tools as Angular 14 on the web side and Native Scripts on the native side (IOS, Android)

using the same backend API for web and mobile versions. More details about Dynamic UI and the tools

used to support it, you can read in Dynamic UI section.

3.2 ACCESS CONTROL

The Maestro system is based on two principles of access control and management: Role-Based Access

Control and License Management.

Role-Based Access Control approach is introduced by a permissions model based on assigning certain

scopes of permissions to users on different levels: Customer, Tenant, Project, and User.

License Management is presented by the Feature Toggling functionality, allowing to manage users’ access

to the Maesptro3 application based on their subscriptions or purchased application editions.

3.2.1 Role-Based Access Control

In scope of Maestro application permissions Model, the classic RBAC model was extended. It now

consists of three levels of entities: Role, Permission Group, and Action:

• User Role – a user attribute defining the user's general level of access to the Cloud. Influences

user permissions. Based on the user’s specified role on a tenant, the user is allowed to perform a

scope of operations defined in one or several permission groups.

• Permission Group - a set of Maestro operations grouped by purpose and expected admission

level of the users who will have access to the group. Each user has access to one or several

permission groups depending on their role within the tenant.

• Actions - a scope of operations the user can perform in the cloud based on user’s permissions.

Each User Role includes Permission Groups, each Permission Group includes Actions, each Action

corresponds to some action that the user can perform in Maestro. Such a structure allows to customize the

model based on customer’s requirements and provide flexible access to users.

Maestro – Architecture Overview

Maestro 14

User Permissions Management

Permissions can be assigned on different levels, such as Customer, Tenant, Project, and User. Permissions

are based on the project role of the user and defines what actions s/he can perform.

Currently, the permission concept is based on three basic notions - permission action, permission group,

and permission mapping:

Figure 3 – User permissions management scheme

Permission action

Permission action is a basic notion that defines definite tasks that can be performed by the user.

For the sake of quicker and easier referencing, all permission actions can be roughly divided into three

groups:

• wizard actions (e.g., CREATE_IMAGE_WIZARD)

• page action (e.g., IMAGES_PAGE)

• actual actions (e.g., CREATE_IMAGE)

Permission group

All permission actions are united into permission groups.

Permission groups can be default and custom.

Custom permission groups are created on request and can unite available permission actions in any

combinations necessary for the customer.

Default permission groups are predefined:

• Full_Access permission group gives the full access (create, manage, read, and kill resources) to

the full functionality of Maestro UI (SaaS).

• Read_Only permission group gives the read-only access (create, manage, read, and kill

resources) to the full functionality of Maestro UI (SaaS).

• Resources_Management permission group allows creating, managing, reading, and killing

resources related to virtual machines (except for billing).

• Resources_Managment_ReadOnly permission group gives the read-only access against

creating, managing, reading, and killing resources related to reporting and billing functionality.

Maestro – Architecture Overview

Maestro 15

• Billing permission group allows creating, managing, reading, and killing resources.

• Billing_ReadOnly permission group gives the read-only access against creating, managing,

reading, and killing resources.

• Manage_Cloud permission group gives the full access to security checks and permissions

management.

• Manage_Cloud_ReadOnly permission group gives the read-only access to security checks and

permissions management.

• Basic permission group gives the access to the basic Maestro UI functionality (support, using

native consoles, managing themes, My permissions and Default settings, managing notifications).

Permission mapping

To determine definite actions that can be performed by a definite user, specific permission mappings are

set up.

There are four permission mappings that are determined by their scope and the place in the mapping

hierarchy:

• customer - permission actions available for all the users of a customer

• tenant - permission actions available for all the users for a tenant

• role - permission actions available for all the users with a specific role

• user - permission actions available for a definite user

The Hierarchy of permission mapping is this:

1. If a mapping exists for a definite user in a tenant, user mapping is used.

2. If a mapping exists for the role in the tenant and this role is not blocked in this tenant, role

mapping is used.

3. If a mapping exists for the tenant, tenant mapping is used.

4. Otherwise, customer mapping is used.

3.2.2 License Management

 When offering the Maestro application to a wide audience of users, the following aspects related to license

payment should be considered:

• The Maestro solution is provided to users based on a set of features that users selected. Thus, it

is necessary to ensure that the user who received access to the application, can use only those

features which were selected and paid for.

• The Maestro application can be purchased in several editions, and depending upon the selected

edition, it is required to be able to cut off the respective purchased/non-purchased functionality.

• It is also necessary to control access to the application functionality if a subscription (monthly or

yearly) is provided to users. In case the regular payment is not performed, the Maestro

application can be disabled from the client’s side until the respective payment is made.

All these objectives are accomplished with the Feature Toggling functionality supported by Maestro. It

provides the possibility to switch features on/off as well as ensure efficient control over subscriptions and

monthly/ annual payments.

The Feature Toggling functionality will guarantee that the Maestro application will not be manipulated by

users without our privity, and all copies of the applications will be under control by respective Maestro

management and support teams.

Maestro – Architecture Overview

Maestro 16

3.3 ORGANIZATION STRUCTURE SUPPORT

Logical instruments to organize v-infrastructure close to the way it is done in your organization.

3.3.1 Organization Units

Maestro supports several organization units which allow for better organization and management of cloud

resources.

The main organization unit for Maestro is a tenant. Tenant is a group of users independent of other groups

but sharing the same cloud infrastructure and resources. A tenant may be a company or a department

within a company or a customer, etc. All cloud providers have their equivalent for a tenant:

• accounts in AWS,

• subscriptions in Microsoft Azure,

• projects in Google Cloud Platform.

Tenant group is a logical unit of tenants created according to the customer’s needs and internal structure

if the company.

In terms of VMWare private agent (is described below), there is one more organizational unit, called

organization. Organization is an entity within the VMWare vCloud Director that corresponds to a customer

or its divisions that need separate resources in the cloud.

Maestro uses the multi-tenant approach in its billing system where different tenants are charged for the

actually consumed resources. The maintenance costs are distributed between the private cloud tenants.

The notion of tenants allows keeping full control of all the cloud resources and their costs.

It is recommended that every tenant has at least one separate account, subscription, and project (or

different accounts for different environments) in different public clouds in order to make the resource

management in this cloud provider more tractable.

Maestro supports these features as related to the organizational units of public cloud providers:

• several AWS organizations can be activated and are supported,

• different AWS organizations can be added to and supported by Maestro,

• Microsoft Azure subscriptions are supported,

• Azure Enterprise Agreement hierarchy model is supported.

3.3.2 Infrastructure Control

Once the infrastructure is built, you need to monitor and control it. To do it in an enhanced way, two types

of KPI are available in Maestro:

• Metrics showing performance to see if infrastructure is effective;

• Tags to structure work with infrastructure to make management, monitoring, and reporting more

effective and convenient.

When talking about organizing infrastructure in a big enterprise, we know how to make parts of it clear,

visible, and measurable.

Maestro – Architecture Overview

Maestro 17

Infrastructure Metrics

Maestro supports different kinds of metrics. There are three following groups:

1. By type:

• Counters

• Chargebacks

• Instance-related

• Custom

2. By dashboard:

• Homepage

• Management

• Reporting

3. By layer:

• Tenant

• Region

• Instance

Instance-Related Metrics

The table below show metrics for virtual machines which can be divided into different categories by cloud,

OS and source.

Type Unit Cloud OS Source

CPU Utilization Percent AWS, Azure, Google Linux, Windows Built-in

Disk Read, Write Bytes, Percent AWS, Azure, Google Linux, Windows Built-in

Network Traffic Bytes AWS, Azure, Google Linux, Windows Built-in

Status Check Bytes AWS Linux, Windows Built-in

RAM Usage Bytes, Percent Azure Linux, Windows Extension

SWAP Usage Bytes, Percent Azure Linux Extension

Built-in (host-level) metrics are host computer metrics. One of the examples is the CPU utilization metric.

There are also metrics for guest VMs (guest-level or extended metrics). Examples of extended metrics

include Memory and SWAP usage.

Extended Metrics on Azure

To enable extended metrics, you can take one of the flows:

Maestro – Architecture Overview

Maestro 18

• enable the Extended Metrics extension on the Run wizard marking the respective checkbox;

Figure 4 – Enabling extensions

• use the Metrics extension content-view item to install or remove the extension.

Figure 5 – Installing or removing Metrics extension

You can also enable extended metrics on Azure Portal through the Diagnostic Settings section of VM

details.

View them under Monitoring/Metrics by selecting Guest (Classic) in Metric Namespace.

Figure 6 – Memory metrics

Enabling guest-level monitoring installs the Azure diagnostics agent on the VM.

By default, a basic set of extended metrics are added (memory and SWAP usage). The process is the

same for Windows and Linux VMs.

Maestro – Architecture Overview

Maestro 19

Please note that extension can be only installed on Linux and Windows instances in running state.

Extension should be configured for usage same storage account, that our application. Possible extension

states:

• available to install

• installed

• not installed

• not supported

• installed, but with unsupported storage account configuration

In the last case, re-install the extension to interact with the Maestro application. The "Not supported" state

is possible on OS other than Linux and Windows, or on very old versions (currently, not handled).

Visualization

The application provides graph viewing and adding metrics only for metrics supported by the selected virtual

machine. This affects the availability of graphs in the list of virtual machines on management page and the

presence of metrics on the corresponding wizard.

Figure 7 – Adding metrics

Storage Account

Guest-level monitoring requires a storage account to store information about extended metrics.

Azure offers several types of storage services. By default, metrics are stored in Table Storage Service,

which allows to use CosmosDB queries for retrieving the data. The Maestro application creates one storage

account for each region in each subscription. Information from virtual machines can only be recorded in the

storage account of the corresponding region.

You can obtain access to a storage account generating an authorization key (2 per account, permanent

access until recalled), or via shared access signatures (unlimited amount, limited access duration). See an

example of an endpoint below:

 http://<storage_account>.table.core.windows.net.

A storage account is billed based on its usage – the amount of stored data and queries.

Resource Tags

Tag is a type of meta information that can define access control rules and describe access requests. Based

on that, it can be applied to any entity, e.g. a resource to work for all Cloud providers.

Maestro – Architecture Overview

Maestro 20

Adding a tag to an entity, you can also request all resources grouped by it. When sending such a request,

you can get the whole variety of entities available from Cloud provider via one API. Thus, tags are an

instrument for analysis, allowing to work with Cloud, and provide resource and cost management in an

effective way.

Maestro uses tags in terms of a unified approach to:

• discover resources

• group resources into logical groups

• control billing

• control access

You can find a panel with filters on the Management page. The availability of filters may vary depending on

the selected cloud.

Filters can be nested, for example, filter by Resource Type includes a filter by Tag Name. They can be in

form of select items or text inputs.

Currently, filters on Google and OpenStack are in progress and not available.

The list below shows filters hierarchy by Clouds:

• AWS:

o Filter by Resource Type

▪ Instances (default)

▪ All Resources (includes all AWS resources; columns: ResourceID (short), Service

(e.g. EC2, CloudWatch), Resource (e.g. Instance, Rule), Tags (as key=value

pairs))

• Filter by Tag Name (exact match, case sensitive)

• Azure

o Filter by Resource Type

▪ Instances (default)

▪ All Resources (includes all Azure resources; columns: ResourceID (short), Service

(e.g. Compute), Resource (e.g. Disk, Image), Tags (as key=value pairs))

• Filter by Tag Name (exact match, case sensitive)

• Google

o Filter by Resource Type

▪ Instances (default)

▪ All Resources (includes only Instances, Images, Volumes; columns: ResourceID

(short), Service (e.g. Compute), Resource (e.g. Disk, Image), Tags (as key=value

pairs))

• Filter by Tag Name (exact match, case insensitive)

• OpenStack

o Filter by Resource Type

▪ Instances (default)

▪ All Resources (includes only Instances, Images, Volumes; columns: ResourceID

(short), Service (e.g. Compute), Resource (e.g. Disk, Image), Tags (as key=value

pairs))

• Filter by Tag Name (exact match, case insensitive)

Maestro – Architecture Overview

Maestro 21

See an example of filtering resources by tag below:

Figure 8 – Filtering resources by tag

You can also use tags for billing reporting. They are different for different Cloud providers:

• AWS - cost allocation tags

• Azure – tags

• Google – not supported.

Please note that these words are reserved by Azure and cannot be used as a tag prefix or

a tag key – microsoft, azure, windows:

Figure 9 – Manage tags window

Maestro – Architecture Overview

Maestro 22

3.3.3 Service Catalog

Maestro provides access to the Service Catalog for its internal customers and potentially these services

can be present on the Marketplace for external ones. Such services as Cloud Management tools, Cloud

hosting services and platform services are available for the customers.

Figure 10 – Marketplace components overview

A service has its lifecycle that includes service activation, update, and deactivation. Each stage of its

lifecycle is monitored and analyzed by the system. To enables access to the Service Catalog and control

the product’s lifecycle Maestro has enough capabilities to ensure this process form both business and

technical points of view.

The main components provided by the system that are required for the reliable services product

management include:

• Product configuration in self-service, that allows users to adjust the product according to the

project needs.

• Support and consulting service that provides assistance to the customers who face with

difficulties and problems.

• Billing service, that allows to bill all the resources consumed.

In current version, Service Catalog is available for Maestro internal customers. The possibility to put

supported services to public marketplaces, in order to make the product easily recognizable and available

for external customers, is under development.

These services include public listening, advertising, customer subscription management services and

discounts.

Maestro is built on Infrastructure as Code concept. Service catalog uses Terraform as a main tool for

service creation and deployment as well as Catalog to provide access to the Terraform service. This

approach allows to deploy dynamic infrastructures. Terraform is a unified tool to create and configure

infrastructure for different cloud providers. It allows to plan the action that can be performed for the

infrastructure that we are going to deploy and predict infrastructure costs. Terraform provides full product

lifecycle management.

Maestro – Architecture Overview

Maestro 23

Using Terraform allows Maestro to be Cloud Antagonistic as users can create templates for different cloud

providers. Maestro includes Terraform Provider for M3 which uses M3 SDK, which allows to create cross-

cloud templates and services.

More details about Terraform integration with Maestro you can find in this section.

Maestro service adding flow includes the following steps:

Figure 11 – Adding service flow

1. User defines product template and variables trough user interface

2. Template processor:

• Saves the template to the blob storage

• Saves variables in a database

• Starts a deploy process to Terraform Service through a message queue

3. Terraform Service:

• Loads template from blob storage

• Loads variables from database

• Validates and applies the template

• Deploys service to public or private cloud

The Catalog page on the User portal looks as follows:

Figure 12 – Catalog page

Maestro – Architecture Overview

Maestro 24

3.4 BILLING AND QUOTAS

Maestro provides a unified billing service that enables collecting private and public billing data for tenants

with different virtual infrastructures and displaying it to the user in real-time mode.

All Cloud-related bills are assigned to the tenant to which the respective resources or services

belong. You cannot reassign any bills to another tenant.

3.4.1 Quotas

Every tenant is subject to quotas that specify how many resources can be used by the tenant within a

definite period of time. The aim of these quotas is to control the spending of the tenant’s financial assets

and to ensure that its cloud resources are used with the optimal efficiency.

Maestro supports two types of quotas:

• daily resource quotas limiting the resources that can be created on the tenant in one day.

• monthly project quotas specifying the tenant’s monthly cost limit for the cloud usage.

Daily resource quotas

Daily resource quotas specify the amount of resources that can be created on the project within 24 hours.

These quotas can be set automatically and result from cloud infrastructure capacities.

Monthly tenant quotas

Monthly project quotas specify the sum of money the tenant can spend on its cloud resources per month.

There are three types of monthly tenant quotas that differ in their scope:

• all is a quota applied cumulatively to all regions in which the project is activated.

• cloud is a quota applied to each of the regions of a certain cloud provider in which the project is

activated (separate for EPAM, AZURE, AWS, and GOOGLE).

• region by name is a quota for a specific region.

Besides setting the maximal allowed monthly costs for the tenant resources, monthly tenant quotas specify:

• action plan that is what happens after the quota level is reached (possible options are Stop

instances when 100% quota depleted, Request approval for new instances after quota is 100%

depleted, and Deny requesting new instances when 100% quota is depleted),

• notification plan that is when you will get the email notification about your quota usage (if you set

notification plan to 90, this means that when 90% of your quota is spent, primary and secondary

contacts of the tenant will get an email saying that 90% percent of the tenant quota is spent). The

notification for 100% of quota spent is sent in all cases regardless of any notification plan settings.

Monthly tenant quotas be changed by the tenant members with the necessary permissions

(UPDATE_QUOTA) in the Manage Quotas wizard.

Here is a diagram that illustrates how the quotas are applied:

Maestro – Architecture Overview

Maestro 25

User tries to run

an instance

Quota is not

reached

Quota is reached

The instance is run

Approval is required

Deny new instances

at 100% of quota

The instance is run

after approval

The instance is not run

An instance

is running

Quota is not

reached

Quota is reached

An instance goes

on running

Stop all instances at 100%

of quota

An instance goes

on running

An instance is stopped

Figure 13 – Application of monthly tenant quotas

3.4.2 Billing

Billing system for private regions is based on the pay-as-you-go principle that allows strictly controlling

infrastructure configurations and expenses and releases constraints implied by prepaid models.

The basic rules of the pay-as-you-go principle are as follows:

• Resources can be billed on per-second (OpenStack) or hourly (VMWare) basis. The price for a

second/hour is derived from the pre-established monthly price and assumes that there are 730.5

hours per month on average.

• Billing is different for running and stopped VMs, as the stopped VMs consume less resources.

The price of the solution depends on the selected cloud, instance configurations, and usage patterns (how

many hours per day/month your VMs are up and running).

Cost object is the description of the service that is utilized by a cloud user and is subject to the billing. Cost

objects can be different – for example, instance usage, storage usage, requests, etc. Cost object is one of

the core concepts in the Maestro billing.

In Maestro, there are two types of billing – private and public.

• Private billing is realized through the private agent. Private agent generates events that are then

billed according to their timelines.

Timeline is an entity that describes the change of states for a certain resource during a period of

time. For example, when the instance is started, the private agent begins a timeline; when the

instance is stopped, the private agent closes the current timeline but is ready to start a new one,

once the instance is started again; and when the instance is terminated, the private agent closes

the timeline, and Maestro stops billing this instance.

Maestro – Architecture Overview

Maestro 26

Billing records are created hourly (at the break of each hour) based on the resource’s timeline.

• Public billing is based on the billing records produced by the cloud provider. This is CSP invoice

for Microsoft Azure; SQL queries to Amazon Athena for AWS, and data provided by the BigQuery

service for Google Cloud Platform (also SQL-query-based).

Maestro transforms these billing data into daily tenant records. Maetro3 doesn’t store the actual

billing data from public clouds but only uses them for creating its own billing records: Billing data

from AWS and Google must be specifically queried, and Azure data is provided as is, but Maestro

refers to them only when cloud users initiate the or2report action (or at the end of a billable period).

Daily records created by Maestro are stored in its databases (so that a user will receive them as

soon as needed) and then aggregated into weekly and monthly ones.

3.4.3 Price Calculator

Price calculator is a reference entity that includes the pricing schema for a definite configuration of a cloud

resource. Price calculators are based on pricing policies and are used for creating hourly billing records for

private regions. These is only one active pricing policy for every private region at a certain period of time.

There are different price calculators which allow for an extremely flexible billing mechanism:

• for instances,

• for volumes,

• for hardware services,

• for hardware devices

• for machine images,

• for checkpoints,

• service price calculator,

• mobile price calculator,

At the break of each hour, Maestro takes all the timelines open within an hour, analyzes the parameters of

the billed cloud recourses (e.g., CPU and RAM for instances), and calculates the prices of these resources

according to the active pricing policy by means of the relevant price calculator:

Price calculator

Billing record

Timeline Resource parameters Pricing policy

Figure 14 – Price calculating algorithm

Maestro – Architecture Overview

Maestro 27

3.5 USER COMMUNICATION

Maestro supports different channels of user communication in order to make it convenient and effective:

• Support requests,

• Emails and notifications (also available at the Notification page in the web version of Maestro and

its mobile application),

• Push notifications from Maestro Mobile.

All these communication channels are equally supported by Maestro and its support teams but differ in the

convenience for the user, user reaction time, and response time:

• up to 1 week for support requests,

• 1-2 days for simple letters,

• several hours for letters with approval,

• several minutes for push notifications in the mobile application.

3.5.1 Notifications

Notifications are the main way of communication between EPAM Cloud Orchestrator and its users, who

are already got accustomed to receiving and reviewing notifications from their emails.

EPAM Orchestrator processes all information and delivers the most important messages (security, billing,

costs, etc.) to the users, as well as carries out messages going via the communication channel between

client and project, with the help of Maestro.

However, Maestro offers users an even more useful set of features ensuring that obtaining, filtering, and

reviewing letters will become more efficient.

This diagram illustrates the Maestro notifications system:

Figure 15 – Maestro notifications system

Notifications system in Maestro is based on the Spring MVC framework which means that actual data is

separated from its representation. This allows changing the notifications appearance and formatting without

changing the data model and employ free market templates for more compelling data representation. A

Maestro – Architecture Overview

Maestro 28

specifically developed renderer acts as an intermediary actor between the notification content and its

representation: it takes the actual data and inserts it into the necessary places of the notification template.

This diagram illustrates how notifications are formed:

Report database Renderer Notification template

Figure 16 – Notification forming algorithm

Maestro stores all the notifications which have ever been sent through it in a model form that allows reaching

two nearly exclusive goals – to save the storage capacities and to give the users quick and easy access to

all their notifications.

Maestro provides the possibility to store the received notifications in one place.

In the Notifications page of the Maestro application, you will be able to review all notifications sent to them

regardless of the period when they were received. Different filters provided on the interface will allow you

to sort notifications to be displayed based on their content, priority, and time of receipt.

1

34

5

6

2

Figure 17 – Notifications page

In the Notifications page, the user can also find and review the notifications which were not sent to him/her

after they disabled notifications or configured the default notification subscriptions.

Push notifications functionality is one of the outstanding features provided by Maestro Mobile Application.

They allow you to immediately recognize and instantly respond to the most important events in the

infrastructure and always be up to date with your infrastructure status.

Push notifications cover infrastructure events and approval requests and are grouped by these types:

• Instance State Changed. Sent to instance owners when the instance status changes (stop, start,

reboot, terminate).

• Login Approved. Sent after the login attempt was approved by the responsible person.

• Approved / Rejected Request. Sent if the specific user action was approved or rejected.

Maestro – Architecture Overview

Maestro 29

3.5.2 Event Audit

All state-changing and other instance-related events occurring within Maestro are registered by the Audit

system and saved to the event base. Audit system is vital for both the correct functioning of Maestro and

the proper usage of cloud resources.

All the audit events are reported to the user in the form of email and push notifications described above.

 Audit system is also the core element of the billing system because timelines according to which cloud

resources are billed are formed on the basis of the audit events.

Maestro users can review the audit data in the Audit page of the Maestro web version.

3.5.3 Jobs

Job is an action performed by the system on behalf of the user or without their direct instructions. The most

frequently performed jobs are:

• starting, stopping, and terminating instances according to the schedules,

• sending reports related to infrastructure state or billing,

• performing health and vulnerability checks and reporting their results to the user automatically or

on request,

• monitoring and deleting system files, etc.

Jobs can be reviewed and monitored on the JMX page, a system management page that provides the

information about different system elements and their functioning. In the JMX page, the user can see this

information:

• jobs, their statuses and parameters, execution periods and schedules,

• application nodes, i.e. available servers together with their addresses, configurations, and

certificates, server statistics, server launching parameters and utilization period, tasks assigned to

these servers,

• server billing data.

JMX page is available only for users with definite project roles.

Maestro – Architecture Overview

Maestro 30

4 PRIVATE AGENT

Maestro makes the necessary provisions for working with both private regions and public clouds. These

provisions are based on the notion of a private agent.

Private agent is a Java application that processes Maestro SDK requests and uses these requests to

manage clouds (only those supported by a private agent). SDK requests are sent according to the AMQP

protocol and encrypted using the AES (Advances Encryption Standard) algorithm.

Within the Maestro Enterprise solution, utilization and management of private clouds can be performed in

two ways:

• via the OpenStack private agent used for managing OpenStack regions,

• via the private agent based on the VMWare technologies and installed on customer premises

(VMWare private agent).

Maestro uses the same mechanism for interacting with both private agents. This mechanism involves

RabbitMQ, a message broker installed on the Maestro side and used for connecting Maestro with private

agents via the standard HTTP protocol. RabbitMQ is open to the world, while a private agent is located on

a private network with Internet access connected to RabbitMQ. An HTTP / SSL connection is configured

on the instance where RabbitMQ is installed, and then a connection is established between the private

agent and Rabbit. These two systems interact by using standard message-broking procedure.

This diagram shows how Maestro communicates with private agents:

RUN

Maestro3

UI

λambda Server RabbitMQ Private agentSDK request message message

Figure 18 – Maestro-to-Private agent communication diagram

Private Agent is available within Enterprise deployment model of Maestro.

4.1 VMWARE PRIVATE AGENT

VMWare private agent is provided to customers with top security requirements so that they can be sure

that no credentials are sent to or stored with third parties. MongoDB is used as a repository where VMWare

private agent stores data required for the interaction with cloud. MongoDB is installed on the same instance

on which the VMWare private agent is deployed and can only be accessed from this instance.

VMWare private agent manages the cloud by means of vCloud Director.

4.1.1 vCloudDirector Data Model

vCloud Director is a high-level API that directly allows setting up and managing clouds namely working with

networks, providing disk spaces, managing instances, etc.

Besides this, vCloud Director supports:

• Instance Audit functionality where any instance action and status changes are reflected as audit

events.

• White Listing option that allows assigning a public address by which Maestro will access to

instances in a private network (in cases when some resources are made public).

Maestro – Architecture Overview

Maestro 31

vCloud Director is a complex entity that includes organizations and virtual data centers serving as

containers for other resources.

Here is the structural diagram of vCloudDirector:

vCloud Director Organization VDC Catalog vApp template

Organization VDC

VDC Catalog

vApp

Catalog

Disk

Network

Instance

public creates

can have

infrastructured in

Figure 19 – vCloudDirector structural diagram

Organizations

Organization is an entity within the vCloud Director that corresponds to a customer or its divisions that need

separate resources in the cloud. Every organization has its own virtual data centers (VDC), catalogs, vApp

templates, and VMs.

Every organization must have at least one VDC. Without VDC, organization is an abstract entity with which

nothing could be done besides logging in.

Currently, VMWare private agent supports only system access to vCloud Director (= credentials are used

to access all the organizations). In future releases, separate access for different Organizations will be

implemented (with separate credentials).

Organizations are used for managing resources in the sense that maximal time allowed for using VMs is

assigned for an organization.

Virtual Data Center (VDC)

Virtual Data Center (VDC) is a virtual space where all the infrastructures are set up. In plain terms, VDCs

serve as a container for everything.

VDCs contain catalogs (both public and private), vApp templates, disks, and networks:

vApp template

VDC vApp

Disk

Network

Instance

creates

can have

infrastructured in

Figure 20 – VDC structural diagram

Each VDC needs some CPU, some RAM, and some amount of the disk space. The amount of VMs that

can be run in a VDC is limited and is limited by the VDC capacities.

Maestro – Architecture Overview

Maestro 32

Catalogs

Catalog is a domain of image names. Catalogs are owned by organizations and are used for storing or

sharing resources.

Catalogs can be private and public:

• Private catalogs are accessible only within the organization.

• Public catalogs are shared by several different organizations or all the organizations within this

vCloudDirector.

Catalogs include vApp templates used for running VMs.

Every resource included in the catalog must have a unique name.

vApp Templates and vApp Applications

vApp template is a native VMWare infrastructure template that is used for running virtual machines. vApp

templates ensure that VMs are consistently configured across an entire organization.

vApp templates include an operating system, applications, and data (similar to Terraform or

CloudFormation templates).

No instance can be run without a vApp template.

vApp templates are not directly running virtual machines. Virtual machines are run by vApp applications

created from vApp templates:

vApp template vApp application Instancecreate runchoose

Figure 21 – vApp template-to-instance relation diagram

Currently, one vApp template can run only one virtual machine.

In future, the functionality of running more instances by one vApp template will be implemented.

4.1.2 Working with VMWare Private Agent

Current implementation of VMWare private agent supports only the most basic operations with virtual

machines, but the available list will be expanded in future releases.

Available Instance Capacities

By default, Maestro users can get project resources of certain predefined capacities defined by shapes.

Shape is determined by the number of vCPUs and the RAM memory volume.

VMWare does not have shapes of its own, so Maestro shapes are used for the sake of reference.

When you run an instance, some default capacities are suggested to you in the selected vApp template

based on the Maestro shapes. You can choose this default suggestion or modify it to your necessary

parameters of CPU and RAM.

Maestro – Architecture Overview

Maestro 33

Here is a reference table with shapes supported by Maestro:

Cloud Shape CPU RAM, GB

MICRO 1 0.5

MINI 1 1

SMALL 1 2

MEDIUM 2 4

LARGE 2 8

XL 4 7.5

2XL 4 16

3XL 8 15

4XL 6 23

5XL 8 32

6XL 8 46

7XL 8 61

8 XL 16 92

Available and Planned Operations with Virtual Machines

Currently, VMWare private agent allows performing these operations with virtual machines:

• run instances,

• start and stop instances,

• reboot instances,

• terminate instances,

• discover instances existing in the VMWare infrastructure but deployed not by Maestro (discovery

check is performed every 30 minutes).

In future releases, we plan to expand this list of the available operations with virtual machines:

• recover an instance from volume,

• resize an instance,

• create and attach additional volumes to the existing instances.

Other upcoming updates will include such operations as:

• push-notifications which inform that a new instance has appeared in the infrastructure,

• automatic adding of an instance to the domain,

• automatic access to the instance via the terminal,

• automatic initial configuration of the instance via the uploaded script.

These new operations will be announced and described separately.

Disaster Recovery Scenario

Current implementation of VMWare private agent supports this disaster recovery scenario:

Detach volume Run instance Attach volume

Figure 22 – Disaster recovery scenario

Maestro – Architecture Overview

Maestro 34

It is performed via the Maestro UI and includes these simple steps:

• (preliminary) copy the applications data to a volume of the existing virtual machine,

• detach this volume from the instance,

• run a new instance,

• attach the existing volume to this new instance.

Maestro – Architecture Overview

Maestro 35

5 ON-PREMISE SOLUTION

Maestro On-Premise solution is a full functioning version of the Maestro application that can be deployed

on any individual instance, without reference to any cloud provider or their datacenters.

On-Premise solution was developed as an alternative to SaaS-based cloud management solutions which

are unacceptable for some enterprises due to the specifics of business or local regulations for data storage.

The difference between the existing SaaS and On-Premise solutions is that the latter is not connected to a

specific cloud. A customer may not be interested in having a configured account in a certain public cloud

(e.g., Amazon) due to various reasons: either a specific software was installed on an instance, or a

agreement exists with a different cloud provider, or the customer has own data centers or servers). A

customer may also consider that keeping information on their own servers provides better security.

Figure 23 – On-Premise architecture scheme

On-Premise installation is designed for using open-source components such as MongoDB, RabbitMQ, etc.

Maestro On-Premise solution can be installed on lower capacities and then be expanded to larger servers

and their sets. Such an approach will satisfy the needs of any customers on their infrastructure.

The development procedure for the On-Premise solution does not require a specific knowledge.

On-Premise solution supports most of the Maestro functionality: running and managing of instances,

creating of images and volumes, creating and managing of SSH keys, full support of permissions and

notifications functionalities, full support of billing and reporting functionalities, full support of Terraform, etc.

On-Premise solution can also support private clouds upon additional configuration.

Maestro – Architecture Overview

Maestro 36

6 CLOUD ABSTRACTION LAYER AND CLOUD INTEGRATIONS

Cloud abstraction level allows to hide the differences, derived from specifics of rendering services by

various cloud providers.

Maestro is currently integrated with the following Cloud providers and platforms, and allows unified access

to them:

• AWS

• Microsoft Azure

• Google Cloud Platform

• OpenStack

• VMware

The information on the steps and necessary parameters, needed to connect accounts in respective

providers to Maestro is given in respective documents. Further in this section, you can find the summary

for each case.

6.1 INTEGRATION WITH AWS

To connect your AWS accounts to Maestro, you need two type of operations – gathering billing data and

managing virtual infrastructures. The following actions should be performed to enable billing data collection:

1. Creating a Cost & Usage report

2. Configuring AWS Athena Service

3. Creating an IAM role for billing access

4. Enabling management

6.1.1 Pre-requisites

In order for administrators of AWS accounts, intending to enable access to billing information and

infrastructure management for the Maestro application, the following prerequisites should be met:

1. A user needs to have an active AWS account.

2. A user needs to have access to the account with root user permissions.

3. A user needs to know the ID of the account to which the access will be provided. Please address

Maestro team for this information.

The final steps on enabling access to billing information and infrastructure management on AWS accounts

will be performed by the Maestro development team upon receiving all necessary data.

6.1.2 Expected Outcome

Once the customer administration team performs all necessary steps on the customer’s account, the

following outcome is expected:

1. A user has a Cost and Usage report created and configured for the user’s account.

2. A user has got an IAM role for enabling access to billing data of the user’s account.

3. A user has got an IAM role for enabling management of infrastructure on the user’s account.

Maestro – Architecture Overview

Maestro 37

4. Users have a file or several files which contain this data for further sharing with Maestro team:

• For billing:

• The ID of the AWS Account from which billing will be gathered

• Athena region code (for example, eu-central-1).

• Cost and Usage reports S3 bucket name

• Athena Query result S3 bucket name

• Billing Access Role ARN name

• Glue Database name

• Glue Table name

• Cost and Usage reports status file S3 Path

• For management:

• Management Access Role ARN name

• The ID of the AWS Account for which management via Maestro should be

enabled.

6.2 INTEGRATION WITH MICROSOFT AZURE

The steps needed to enable integration with Azure depend on the subscription type used by the customer

– whether it is an Enterprise Agreement, or a CSP-type.

6.2.1 Account with Azure EA subscription

To connect your AWS accounts to Maestro, you need to perform the following actions:

1. Generate an API Key for enabling billing access

2. Register application in Azure AD by:

• Registering Maestro as an Azure AD application

• Assigning the application to a role

• Getting values foe signing in

6.2.1.1 Pre-requisites

In order for administrators of Azure accounts, intending to enable access to an Azure Enterprise Agreement

billing, the following prerequisites should be met:

1. A user needs to have an active Azure EA subscription.

2. A user needs to have access to the subscription with the following permissions:

Task Portal Role

Generating an API key https://ea.azure.com Enterprise Enrollment
Admin

Registering an application in Azure
AD

https://portal.azure.com Admin (with permissions to
register an application and
assign a role to it)

To generate an API key, Maestro needs requires the following pre-requisites:

• Enrollment Number

• Azure EA API key

https://ea.azure.com/
https://portal.azure.com/

Maestro – Architecture Overview

Maestro 38

To provide Maestro with the necessary access, you need to provide a set of access-related values:

• Directory ID (Tenant ID)

• Application ID (Client ID)

• Authentication Key

The final steps on enabling access to Azure Enterprise Agreement billing will be performed by the Maestro

development team upon receiving all necessary data.

Expected Outcome

Once the customer administration team performs all necessary steps on the customer’s account,, the

following outcome is expected:

1. Maestro application is registered in the user’s subscription as an Azure AD application with a

Contributor’s role.

2. The user has a file or several files, which contain the following:

• Azure EA enrollment number

• Azure EA enrollment API key

• Azure EA subscription ID

• Directory ID (Tenant ID)

• Application ID (for Maestro application)

• Application Authentication key (for Maestro application)

6.2.2 Account with Azure CSP subscription

To connect your Azure accounts to Maestro, you need to perform the following actions:

1. Enable access to CSP billing information by:

• Locating the Microsoft Partner Network ID

• Locating the default domain

• Creating the CSP web app

• Generating a key for the web app

2. Register application in Azure ID by:

• Registering Maestro as an Azure AD application

• Assigning the application to a role

• Getting values for signing in

Pre-requisites

In order for administrators of Azure CSP subscriptions who want to enable access to the subscription billing

information for the Maestro application, the following prerequisites should be met:

1. The user’s organization needs to have a Microsoft Azure Partner status.

2. The user needs to have access to the Microsoft Azure Partner Center.

3. The user’s organization needs to have a partner domain (can be retrieved via Microsoft Azure

Partner Center).

4. The user needs to have access to the subscription with the following permissions:

https://partner.microsoft.com/

Maestro – Architecture Overview

Maestro 39

Task Portal Role

Creating the CSP Web App https://partnercenter.microsoft.com/ Global Admin

Registering an application
in Azure CSP

https://portal.azure.com Admin (with
permissions to register
an application and
assign a role to it)

The final steps on enabling access to Azure CSP subscriptions billing will be performed by the Maestro

development team upon receiving all necessary data.

Expected Outcome

Once the customer administration team performs all necessary steps on the customer’s account,, the

following outcome is expected:

1. A CSP Web app is created.

2. Maestro application is registered in the user’s subscription as an Azure AD application with a

Contributor’s role.

3. The user has a file or several files, which contain the following:

• MPN ID

• Default Domain name

• CSP web app Application ID

• CSP web app key

• Directory ID (Tenant ID)

• Application ID (for Maestro application)

• Application Authentication key (for Maestro application)

6.3 INTEGRATION WITH GOOGLE CLOUD PLATFORM

To connect your Google accounts to Maestro, you need two type of operations – to enable access to Google

Account billing and provide an opportunity to manage virtual resources. The following actions should be

performed to set up billing:

1. Activate billing export in Maestro by:

• Creating a new project (optional)

• Creating a billing account

• Linking a billing account to a project

• Activating billing export

2. Create service account

To enable project management for Maestro the following actions should be made:

1. Configure Google Project for Maestro

2. Create Terraform service account

https://partnercenter.microsoft.com/en-us/pcv/apiintegration/appmanagement
https://portal.azure.com/

Maestro – Architecture Overview

Maestro 40

6.3.1 Pre-requisites

In order for administrators of Google accounts, intending to enable access to billing information and

infrastructure management for Maestro application, the following prerequisites should be met:

1. A user needs to have an active Google account.

2. A user needs to have access to the account with admin permissions.

3. Billing data export to BigQuery should be enabled.

The final steps on enabling access to billing information and infrastructure management on Google

accounts will be performed by the Maestro development team upon receiving all necessary data.

6.3.2 Expected Outcome

Once the customer administration team performs all necessary steps on the customer’s account,, the

following outcome is expected:

3. Maestro service account is registered in the user’s Google account.

4. A user gets a file or several files, which contain the following:

• Project ID

• For Billing:

• Billing Account ID

• BigQuery Dataset ID

• BigQuery Table ID

• Billing Service Account credentials in JSON format

• For Management:

• OAuth2 Client ID

• OAuth2 Client Secret

• OAuth2 Refresh token

• OAuth2 Access token

• Service Account email for Terraform

6.4 INTEGRATION WITH OPENSTACK

To connect your OpenStack accounts to Maestro, you need to set up and configure a private agent in

OpenStack. The following actions should be performed:

1. Install private agent

2. Install M3Admin

3. Configure private agent

6.4.1 Pre-Requisites

In order for administrators of OpenStack accounts, intending to enable access to their infrastructure

management for Maestro application, the following prerequisites should be met:

This data can be obtained upon downloading the rc.sh file from the OpenStack Horizon via the export config

option. This file contains the most part of information which is required for connecting to OpenStack, such

as:

Maestro – Architecture Overview

Maestro 41

• Open Stack Host

• Project ID

• Project Name

• Project User ID

• Project User Name

• Project User Password

• Admin User ID (optional)

• OpenStack RabbitMQ (optional)

• OpenStack RabbitMQ User Name (optional)

• OpenStack RabbitMQ User Password (optional)

• OpenStack RabbitMQ Hostname (optional)

• OpenStack RabbitMQ Exchanges Name (optional)

• Admin User Name (optional)

• Admin User Password (optional)

• Security Group Name

• Image IDs

• Image Names

• Flavor IDs

• Flavor Names

• Public Image Owner ID

• Network ID

• Network Name

• Security Group ID

The final steps on enabling access to infrastructure management on OpenStack accounts will be performed

by the Maestro development team upon receiving all necessary data.

6.4.2 Expected Outcome

Once the customer administration team performs all necessary steps on the customer’s account, users will

get a configured private agent which is ready to be used for managing a specified OpenStack region.

The following information about the created entities should be returned to the Maestro team:

• Image Aliases Names

• Region Names

• Tenant Names

• Shape Names

Maestro – Architecture Overview

Maestro 42

7 EVENT-DRIVEN ARCHITECTURE

Maestro is developed based on the following principle: every action is an event and a result of this event.

If a user wants to perform an action, he/she notifies the system about it, and the intent becomes an event.

Then the event is processed, and the desired action is performed on the basis of the request.

7.1 EVENTS AUDIT

In the Maestro system, all user’s actions get through an audit. If, for example, a user has run or stopped an

instance, a record about this event is saved to the database.

The information about any action performed by users can be obtained in the form of an event audit and

based on the latter the billing is calculated.

Altogether, the audit is a core of the Maestro application, as at first there is an action, then the action audit

is performed and then based on the audit all necessary post-actions are done. For example:

1. a user runs an instance;

2. information about this occurred event appears in the system;

3. the audit of this event is performed;

4. audit record appears in the Content View – Audit tab;

5. the handler responsible for sending audit notifications sends a letter informing that the instance

was run;

6. based on the audit counters are changed, quotas are recalculated, etc.

Thus, the audit is one of the core mechanisms of the Maestro application.

7.2 EVENT-DRIVEN ARCHITECTURE

The basic principle of building the Maestro framework is the following: any action triggers an event. Each

subsequent state of the database can be restored by events: if we backup the database at some point in

time, and then gradually roll up the changes due to event processing, then, while reconstructing the events

in the order in which they arrived, we will restore the database state, at the moment when it fell.

Maestro uses RabbitMQ and AMQP as an event broker for an event-driven approach. RabbitMQ is used

as one of the mechanisms for listening to an event, since events can be generated by both lambdas and

the private agent.

If the private agent generates an event, it sends it to RabbitMQ, the system listens to the event and

processes it, i.e. all events related to instances are stored there.

If a Lambda generates an event, then it sends it to the server directly via HTTP.

The Maestro system uses SDK as a single point through which events are transferred to the Maestro

application. But there are gaps, considering that if we throw event data through HTTP, and the server is

unavailable at this time, it can be lost. RabbitMQ event data to accumulate and is the layer that provides

persistency and consistency of events.

.

Maestro – Architecture Overview

Maestro 43

8 M3 SDK

Maestro SaaS Software Developer’s Kit (SDK) has been implemented using JSON-RPC as a Remote

Procedure Call (RPC) protocol. It uses JSON for serialization and has been chosen due to its simplicity,

lightweight and cleanness, among other advantages (see below).

The protocol works by sending a request to a server implementing it. The client is typically a software

application, intended to call a single method of a remote system. Multiple input parameters can be passed

to a remote method as an array or an object, whereas the method itself can return multiple output data as

well.

A remote method is invoked by sending a request to a remote service using HTTP or a TCP/IP socket

(starting from version 2.0). When using HTTP, the content-type can be defined as application/json.

All transfer types are single objects, serialized using JSON. A request is a call to a specific method provided

by a remote system. It must contain three certain properties:

● method – a string with the name of the method to be invoked

● params – an array of objects to be passed as parameters to the defined method

● id – a value of any type, which is used to match the response with the request it is replying to.

The receiver of the request must reply with a valid response to all received requests. A response must

contain the properties mentioned below.

● result – the data returned by the invoked method. If an error occurred while invoking the method,

this value must be null.

● error – a specified Error code if there was an error invoking the method, otherwise null.

● id – the id of the request it is responding to.

Since there are situations where no response is needed or even desired, notifications were introduced. A

notification is similar to a request except for the id, which is not needed because no response will be

returned. In this case the id property should be omitted or be null.

There are many different ways to implement API for the application. For example, REST based API means

that each unique URL is a representation of some object or resource. A user can get the contents of that

object using an HTTP GET method, to delete it, then use POST, PUT, or DELETE to modify the object (in

practice most of the services use POST for this). REST is great for public-facing APIs, intended for use by

other developers. They can be designed in accordance with common standards, as to not require a lot of

preexisting knowledge about the service that is going to be used.

However, in our case EPAM Cloud Orchestration API has to provide access to a specific set of functions.

Our main goal was to develop a lightweight, well-specified interface that does not have direct access to

data but performs a remote call of Orchestration functionality.

We have considered the following advantages of JSON-RPC:

• Unicode – both JSON and JSON-RPC support Unicode out-of-the-box,

• Transport-independent – JSON-RPC can be used with any transport socket: TCP/IP, HTTP,

HTTPS etc.,

• Direct support of Null/None,

• Support of named/keyword parameters,

• Built-in request-response matching ("id"-field),

Maestro – Architecture Overview

Maestro 44

• Error codes: ranked and well specified, covering a wide spectrum of possible exceptions.

• Notifications.

All procedure calls are strictly atomic and return a well specified, determined result. Clients are not required

to know procedure names and the specific order of arguments, because the specifics of JSON-RPC is

hidden within our implementation to make the SDK more convenient for use.

8.1 CONFIGURATION

8.1.1 Maven Configuration for Maestro JAVA SDK

Add the following within the <dependencies> section of your POM:

 <dependencies>

 <dependency>

 <groupId>com.m3.sdk</groupId>

 <artifactId>m3-sdk</artifactId>

 <version>1.0-SNAPSHOT</version>

 </dependency>

 </dependencies>

The artifacts are available via EPAM Maven Repository.

<repositories>

 <repository>

 <id>artifactory.epam.com</id>

 <name>artifactory.epam.com-releases</name>

 <url>http://artifactory.epam.com/artifactory/EPM-CIT</url>

 </repository>

 </repositories>

8.1.2 Entry Point

The entry point for Maestro Java SDK is M3Sdk. It can be reached by the following

address: com.m3.sdk.

8.1.3 Typical Working Scenario

1. Create a client

IM3client client =

M3Sdk.client(serverContextProvider, clientContextProvider, credentialsProvider, access

KeyProvider);

2. Execute command

M3ApiResult result = client.<commandName>(

 "parameter1",

 "parameter2",

 …);

http://artifactory.epam.com/

Maestro – Architecture Overview

Maestro 45

8.1.4 Maestro SDK Structure

The following paragraph describes the structure of Maestro SDK, which is available in the project

repo.

Figure 24 – Maestro Java SDK structure

8.2 AUTHORIZATION ALGORITHM

The SDK client for Maestro API uses three headers to provide authorization information into the server.

• Maestro-Authentication - the request signature generated by M3 SDK based on Maestro-

accessKey provided by SDK client.

• Maestro-request-identifier - the client identifier provided by the SDK Client and used for the

security purpose.

• Maestro-accessKey - the identity that should be registered in EC2 parameters store and used to

verify the client. To register the identity, please address the M3 admin team.

The authorization is performed according to the following scenario:

1. Get the long representation of the request date from <Maestro-date> header:

long date = new Date().getTime();

Maestro – Architecture Overview

 46

2. Construct SecretKeySpec from the secretKey and date

byte[] bytes = Charset.forName(“UTF-

8”).encode(String.format(“%s%s”, secretKey, date)).array();

SecretKeySpec secretKeySpec = new SecretKeySpec(bytes, “HmacSHA256”);

3. Generate the sign:

Mac mac = Mac.getInstance(“HmacSHA256”);

Mac.init(secretKeySpec);

byte[] message = mac.doFinal(String.format(“M3-

POST:%s:%s”, accessKey,date).getBytes());

StringBuilder builder = new StringBuilder();

for (final byte element : message) {

    builder.append(Integer.toString((element & 0xff) + 0x100, 16));

}

String sign = builder.toString();

4. The new String(sign) is <Maestro-Authentication> header

On the Server side, it is needed to get the same signature and compare it with the Client’s signature.

Java SDK sample:

If you use Maestro Java SDK, all of the above is performed inside M3Client class.

M3Sdk.client(new M3StaticServerContextProvider("serverUrl"),

new M3StaticClientContextProvider(new M3ClientContext("clientIdentifier")),

        new M3StaticCredentialsProvider("accessKey", "secretKey"),

new M3StaticAccessKeyProvider("accessKey"))

Also, you can replace static providers with your own implementations of IM3ServerContextProvider,

IM3ClientContextProvider, etc.

Maestro – Architecture Overview

 47

9 DYNAMIC UI

Dynamic UI is an UI which depends on user’s state and encourages users to interact with it. Maestro

contains a set of wizards that allows users to perform action in a user-friendly way.

Wizards contain various display components: checkboxes, radio buttons, controls, text areas. For each of

these elements a correspondent UI component is created. The implemented logic allows to directly define

the behavior of the component as autonomous element (display, font, etc.), as well as describe the

interaction with other components.

The logic is described in the JSON script, which is provided by the backend. The script is based on a

specific pattern containing description of components to be displayed on a page, and the parameters of

how the components should interact with each other. The application UI will be displayed according to this

logic.

Since wizards are the main unit of management in our application, it is sometimes required to create more

wizards when implementing new features. In terms of Maestro solution such wizards are implemented

based on the already created logic, as a result having no need to additionally bring UI specialists. We

created a process which allows to dynamically configure UI based on pre-written logic, thus sufficiently

speeding up the time for development.

Using this approach allows to cut down the development time and implement the localization tasks.

Dynamic UI also allows to use the UI component, which was created once, both in native and web

applications.

9.1 ANGULAR 14

Angular is a framework, which imposes certain conditions to its architecture. Unlike a library that allows you

to write in any style, the framework obliges you to follow certain rules.

It is also very suitable to use Angular in large projects, since the architecture there is clearly visible, the

project components and services are defined, as well as the processed of interaction with the backend and

authentication are highlighted. With Angular 14, it’s much easier to manipulate a large project.

9.2 NATIVE SCRIPT

The Native Script is based on Angular, i.e. there is no need to change the development language. The

same developer can contribute to both the web application and the mobile application. It is possible to use

the existing logic, i.e. reuse existing solutions from the web to mobile. Since Maestro is a hybrid solution,

one code is written, upon which, at the end after the build, two bundles will be obtained: for IOS and Android.

Thus, such a development flow sufficiently reduces time for reduces development without involving

additional specialists.

Maestro – Architecture Overview

 48

10 MAESTRO DATABASES

Maestro uses two databases to process its datasets. The first is MongoDB, the second one is DynamoDB.

MongoDB is a document-oriented NoSQL database program. DynamoDB is a serverless database

provided by AWS. Compared to MongoDB, DynamoDB provides faster read and write speeds, but it is

significantly more expensive and can store lesser amounts of data. At the same time, Maestro required

large volumes of data for billing, but speed is not sufficient,

Thus, Maestro uses MongoDB to store data. Thanks to MongoDB, Maestro database structure can be

adjusted to various business requirements, which cannot be done with standard databases.

MongoDB is located on Maestro servers. Maestro fully manages it as well as installs and monitors server

clusters. Its free structure allows adapting models to the necessary business requirements, i.e. in SQL

databases the structure should be designed at the stage of functionality development.

10.1 MONGODB ADVANTAGES

MongoDB has a set of advantages which was made it a solution of choice:

• Allows storing unstructured data of a quite a large maximum volume up to 16MB per one document.

• Allows make ad-hoc queries, although indexed queries are processed much faster than queries

without indexes.

• Allows using nested queries.

• Low cost.

10.2 MONGODB CONSTRAINS

Unlike traditional SQL databases, it does not have the Join function. To query two or more tables, you can

do the following:

• perform either several queries on the client side (i.e. on the application server) OR

• use the aggregation framework (such a function is Available in MongoDB).

MongoDB makes several queries and then returns the result in a specific way. Maestro uses such requests

for billing.

Absence of transactions in MongoDB does not influence Maestro functionality as it is a distributed

application, and requests to the database come simultaneously from different servers.

10.3 MONGODB USAGE IN MAESTRO

Maestro mainly focuses on using MongoDB for billing procedures. Besides, other parts of the application

use capped collections functionality which enables flexibility and the ability to store large amounts of data.

Unlike some other databases, MongoDB requires approximately 1GB of RAM per 100.000 assets. If the

system has to start swapping memory to disk, this will have a severely negative impact on performance.

MongoDB is not very fault tolerant, but in this case a cluster can be a solution. All environments of Maestro

use clusters of this database, represented by several running instances. One of them is appointed as a

master and all writing operations are performed through it. All other databases are used as reading replicas.

Maestro – Architecture Overview

 49

At the same time, these replicas can be used to create backups of the databases at any time without losing

application performance.

Besides, MongoDB supports JavaScript natively and can process queries written in JavaScript. Sometimes,

it is also used for complex scripts, such as database patches.

Maestro – Architecture Overview

 50

11 SUPPORT AND DEVOPS TOOLS

11.1 TERRAFORM AND TERRAFORM PROVIDER

The main IaC toos taken on board by Maestro is Terraform by HashiCorp – a cross-platform solution

which allows managing complex infrastructures hosted in multiple clouds. Terraform is a tool for building,

changing, and versioning infrastructure in a safe and efficient manner.

Terraform is built on a plugin-based architecture, enabling developers to extend Terraform by writing new

plugins or compiling modified versions of existing ones.

The main principle of this tool is in Infrastructure as a Code approach, i.e. infrastructure parameters are

described in a template, in a JSON and HCL formats. Both formats are supported by Maestro.

11.1.1 Integration with Terraform

Maestro integration with Terraform provides its users with ability to:

• store templates in AWS S3 and in GitHub and upload templates from the repository

• automatically react to updates in GitHub (auto plan and auto apply)

• plan and apply templates

• review and validate logs

• lock templates for further modification, planning or applying

• share and re-use templates

M3 supports the following Terraform functionality:

• ability to upload templates through the UI

• possibility to edit templates via Maestro UI, it is possible to receive information about the

resources that were deployed and monitor the logic of the template

• imposition of limitations for specific users, i.e. for users and for regions.
.

To register the GitHub based template on Maestro, the following parameters should be specified:

• source type (GitHub) – only after this, the necessary input field will appear,

• your GitHub username and password,

• URI of the relevant GitHub repository and its branch,

• folder where your Terraform templates are stored,

• (optional) Terraform variables and their values to be used as default ones when the template is

applied.

You must also select what actions Maestro will take once the template is updated in the GitHub repository

(None, Auto plan, or Auto apply):

Maestro – Architecture Overview

 51

Figure 25 – Upload templates window

Once registered, the both GitHub and AWS-based Terraform templates can be reviewed in the Catalog

page with any version of Maestro Orchestrator. Terraform templates stored in GitHub are updated and

validated automatically once they are changed in the repository – you do not need to do it specifically for

Maestro.

In the Catalog page, you can review and manage all the existing templates (both Terraform and

CloudFormation ones, supported by AWS):

Figure 26 – Service catalog page

Maestro – Architecture Overview

 52

Provided information:

• name and description of the Terraform template, its type and status

• template code

• validation status and validation logs

• events related to the template

• default values of the template parameters

.

Terraform templates management is performed with a set of wizards and buttons, available on the

Dashboard and Catalog Page. The table below lists the available stack templates actions and their basic

details:

Action Description Action Source

Upload Upload a stack template to Maestro Manage Templates Wizard

Plan
Create execution plan and estimate the results
of template application.

Catalog Page

Apply Apply the stack template on infrastructure Catalog Page

Remove Deletes the stack template from Maestro Manage Templates Wizard

Lock
Locks the template from other users, so that
they cannot modify or remove it

Catalog Page

View execution
log

Display the execution logs of the template Catalog Page

Download logs
Download template execution or planning logs
in a zip archive

Catalog Page

Terraform allows to automate all changed and provide versioning of the infrastructure.

Terraform CLI is a free tool and can be used by command line utility.

11.1.2 Terraform Provider for Maestro

Terraform is a framework for configuration, but one Terraform template cannot be written in a unified way

so that it could be used for different cloud providers (the template for AWS will not work if you deploy it in

Azure). Maestro provides its own custom tool - Terraform-Provider that gives the users possibility to work

with the provided API so that they can deploy the infrastructure with a single template on any cloud

provider supported by Maestro, including private OpenStack region.

Working with Terraform Provider for OpenStack

Requirements:

The following software should be installed before you use Terraform:

• Terraform 0.12+.

• Go 1.13 (to build the provider plugin).

To start using the provider, do the following:

1. To build the Terraform Provider plugin, run:

https://www.terraform.io/downloads.html
https://golang.org/doc/install

Maestro – Architecture Overview

 53

#linux

go build -o terraform-provider-m3_v0.2

#windows

go build -o terraform-provider-m3_v0.2.exe

2. Move the plugin to the user plugins directory (you can find more details here):

#linux

mv terraform-provider-m3_v0.2 ~/.terraform.d/plugins

#windows

move terraform-provider-m3_v0.2.exe %APPDATA%\terraform.d\plugins

3. Specify the provider settings:

provider "m3" {

 url = "http://ip:port/maestro/api/V3"

 access_key = "access_key"

 secret_key = "secret_key"

 user_identifier = "user_identifier"

}

The current implementation supports the limited scope of operations, but the existing configuration is
enough to run a VM and create an image.

Below, you can find an example of the provider usage by one of our colleagues who contributed the
feature:

These parameters are enough to run an instance:

resource "m3_instance" "my-server" {

 image = "CentOS7_64-bit"

 instance_name = "test_name"

 region = "EPAM-OPENSTACK-3"

 tenant_name = "EPMC-EOOS"

 shape = "MINI"

 key_name = "sshkey"

}

These parameters are enough to create an image:

resource "m3_image" "my-image" {

 tenant_name = "EPMC-EOOS"

 region_name = "EPAM-OPENSTACK-3"

 image_name = "ImageFromTf"

 source_instance_id = "ecs00100019F"

 description = "Here is image desccription"

}

https://www.terraform.io/docs/plugins/basics.html

Maestro – Architecture Overview

 54

11.2 CHEF

Chef is an open source automation tool that allows to quickly set up and configure the necessary

infrastructure, and to change the configuration if needed. System configuration files that describe how Chef

manages server applications are called recipes. Several recipes grouped together constitute a cookbook.

Currently this functionality is implemented and working in a test mode on the AWS cloud, supporting Jenkins

and Artifactory automation systems.

Functionality was tested on AWS cloud using the following parameters:

OS Shape Role

CentOs7 Medium artifactory-acs

Ubuntu16 Medium jenkins_epc

All profiles have some requirements to instance OS/Shape.

In the current implementation, validation for these requirements is not supported, so some

combination for OS/Profile/Shape may not be working.

11.2.1 Configuring Chef

See an example of configuring Chef in Maestro below:

1. A region should be activated with parameters, set specifically for working with Chef. To get an access

to such a region or to configure Chef for the already activated project, send a specified request to the

Maestro support team.

Thus, when launching an instance, this region should be specified in a Region field together with other

parameters for running the instance.

2. Select the Set chef configuration checkbox and specify the Chef Profile. The profile defines the

configuration that should be installed on the instance.

3. On the screen you can review information about the Сhef Profile, which was specified on a previous

step.

Maestro – Architecture Overview

 55

Figure 27 – Chef configuration example

4. The Autoconfiguration tab is added to the Content View section of the specified instance in AWS

cloud. It contains useful information about chef role (not available at the moment), state and chef

server. As a result, the installation of the software selected depending on the Chef Profile was

successfully performed on the instance.

5. In order to access and interact with the interfaces of the installed software (in this case - artifactory

and Jenkins), perform the following actions:

a. Copy the public DNS name of the instance;

b. Open the User Interface of the launched application, using the copied DNS name:

• For Jenkins: <DNS_NAME>:8080

• For artifactory: < DNS_NAME > :8081/artifactory.

1

4

2

5a

3

5b

Maestro – Architecture Overview

 56

11.2.2 Work Principles

When a software is being installed on an instance, an init script is added to it. The instance gets registered

in Maestro. After that, communication between the Chef server, Maestro server, and a Chef client is

established.

See the scheme for an init script used by Chef below:

Figure 28 – Init script used by Chef

Maestro – Architecture Overview

 57

The table below lists required variables for the init script.

Variable Placeholder Description Example

CONF_URL @VAR_EP_ORCH_IP URL endpoint to
Orchestrator

https://config.cloud.epam.co
m/orchestration-dev

orch_url @VAR_CONFIG_URL URL endpoint to
Orchestrator
(when VAR_ACS_ENAB
LE=false)

https://qa.cloud.epam.com

VIRT_TYPE @VAR_VIRT_TYPE Virtualization type OPEN_STACK/AZURE/AWS/G
OOGLE

NODENAME @VAR_NODENAME instanceId ecs00012345678

ACS_ENABLE @VAR_ACS_ENABLE autoConfigurationDisa
bledType from Projects

true/false

CHEF_PROJECT @VAR_PROJECT_CHEF Dedicated Chef server
is used

true/false

CHEF_SRV @VAR_CHEF_SERVER Chef server fqdn acs.cloud.epam.com

CHEF_ENV @VAR_CHEF_ENV Chef environment development/production

CHEF_ORG @VAR_CHEF_ORG_NAME Chef organization
name

epam-dev/epam-qa/epam

SSH_USER @VAR_SSH_USER Default OS username ubuntu/admin/centos

USER_SCRIPT @VAR_USER_SCRIPT String containing links
to user scripts and
launch parameters, if
used

/api/files/0aca25d4-ffc8-
46c0-907a-
0dc4f21cd98a/user-
init.sh:fuu#bar

NOTIF_URL @VAR_NOTIF_URL Used as a signal that
the VM has entered
the running condition

https://qa.cloud.epam.com/a
pi/openstack/notification/ru
nning

OS_CHECKSUM @VAR_NOTIF_CHECKSUM Used together
with NOTIF_URL

SXVZSjl0czlJbENFSmxpdXFnSk
0wUlBo

11.3 ANSIBLE

As an automation system for provisioning and configuring infrastructure, Ansible allows installing software

on virtual machines and manage large clusters of them on different cloud providers.

A distinctive feature of Ansible is that the system has a server, which does not contain the client side, i.e.

you do not need a client to be installed on a virtual machine. Ansible accesses virtual machines via SSH,

and is intended for working with Linux machines, though it is possible to use it for Windows as well. Thus,

a Linux server has access to a virtual machine via SSH and performs pre-defined tasks there.

The tasks which should be performed on a virtual machine are described in playbooks. A playbook is

structured on lambda, which describe conditions of the necessary tasks (similar to a template or a stack).

Ansible also works with host groups where hosts are described/registered. The host group defines virtual

machines that Ansible should affect. Grouping is necessary to define the scope of work, i.e. a playbook is

launched for a certain group.

Every host group is created manually in a JSON format and contains the following:

• name of the host group

• DNS names or IP addresses of the VMs to perform automation configuration on.

Maestro – Architecture Overview

 58

For example, to install a new Java software version on a group of Jenkins slaves,

you can define the conditions in a playbook. Running a playbook will make Ansible

go to all hosts and perform the same playbook on them.

Dynamic Inventory

Besides, Ansible includes the Dynamic Inventory feature that enables retrieving information from dynamic

sources. In this case, dynamic groups are created on the fly using cloud providers (Maestro). You can

configure dynamic groups to any criteria - keys, security groups, tags.

Maestro works with dynamic groups, their management, and provisioning of these groups to users.

Figure 29 – Ansible and Dynamic Inventory flow

In Maestro solution, Ansible is introduced via the respective wizard on the Main Dashboard.

The wizard allows to generate an Ansible client for the selected region and tenant. The result will be

provided as a downloadable zip, containing the dynamic inventory files.

To start working with Ansible client, select Ansible wizard, and perform the required steps. For a detailed

information, please see Annex B.

After you perform the necessary steps, you obtain a downloadable .zip file. The zip file contains a

configuration file and a Python script with lambda that configures a dynamic inventory file.

The dynamic inventory file is a list of virtual machines, including their IPs, DNS addresses and all other

VM properties grouped by parameters, e.g. tags, keys, owners, security groups etc.

To make the Python script work, correct it according to your parameters. After that, launch the script using

CLI. It will start sending the parameters, created during the generation of this Ansible client, to lambda.

Maestro – Architecture Overview

 59

Knowing the parameters, lambda describes virtual instances in a specified tenant and region. Lambda

sends a request to a TCP service for obtaining a list of all VMs. Upon obtaining the data, lambda groups it

according to the specified keys, loads the dynamic inventory file into S3 and send a link to this file to Ansible

Client.

Resign URL, a temporary link to the file stored in S3 is signed with the credentials of this lambda and

expires after 15 minutes on creation. If it is not obtained by the client within 15 minutes, the file becomes

unavailable, as the infrastructure is updated every 15 minutes.

Upon loading the file, Ansible starts to analyze the file and defines what software should be configured on

which VMs. Information about the software is obtained from the playbook, the list of VMs to be configured

is obtained from the Dynamic Inventory file.

The list of VMs with properties grouped by virtual keys, is provided to Ansible.

Ansible is the most popular open source automation tool on GitHub. It is an automation tool used to

configure systems, deploy software, and orchestrate more advanced tasks such as continuous

deployments or zero downtime rolling updates.

Maestro – Architecture Overview

 60

ANNEX A – MAESTRO SAAS PERMISSIONS

EO_ORCHESTRATOR

AWS Managed policies

'arn:aws:iam::aws:policy/AdministratorAccess'

Custom policies

- AdministratorAccess

AdministratorAccess

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }

]

}

EO_INSTANCE

AWS Managed policies

'arn:aws:iam::aws:policy/AmazonS3FullAccess'

'arn:aws:iam::aws:policy/CloudWatchFullAccess'

'arn:aws:iam::aws:policy/AmazonSSMFullAccess'

'arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess'

'arn:aws:iam::aws:policy/AmazonSNSFullAccess'

'arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore'

EO_API

AWS Managed Policies

'arn:aws:iam::aws:policy/AmazonS3FullAccess'

'arn:aws:iam::aws:policy/CloudWatchFullAccess'

'arn:aws:iam::aws:policy/AmazonSSMFullAccess'

'arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess'

'arn:aws:iam::aws:policy/AmazonSNSFullAccess'

'arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore'

EO_LAMBDA

AWS Managed Policies

'arn:aws:iam::aws:policy/AmazonS3FullAccess'

'arn:aws:iam::aws:policy/CloudWatchFullAccess'

'arn:aws:iam::aws:policy/AmazonSSMFullAccess'

'arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess'

'arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore'

'arn:aws:iam::aws:policy/service-role/AWSLambdaSQSQueueExecutionRole'

'arn:aws:iam::aws:policy/AmazonCognitoReadOnly'

Maestro – Architecture Overview

 61

Custom policy

- eo_lambda_policy

eo_lambda_policy

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ec2:*",

 "elasticloadbalancing:*",

 "cloudwatch:*",

 "autoscaling:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonEC2FullAccess1"

 },

 {

 "Condition": {

 "StringEquals": {

 "iam:AWSServiceName": [

 "autoscaling.amazonaws.com",

 "ec2scheduled.amazonaws.com",

 "elasticloadbalancing.amazonaws.com",

 "spot.amazonaws.com",

 "spotfleet.amazonaws.com",

 "transitgateway.amazonaws.com"

]

 }

 },

 "Action": [

 "iam:CreateServiceLinkedRole"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonEC2FullAccess2"

 },

 {

 "Action": [

 "cloudformation:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSCloudFormationFullAccess"

 },

 {

 "Action": [

 "sqs:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonSQSFullAccess"

 },

 {

Maestro – Architecture Overview

 62

 "Action": [

 "sns:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonSNSFullAccess"

 },

 {

 "Action": [

 "xray:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSXrayFullAccess"

 },

 {

 "Action": [

 "states:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSStepFunctionsFullAccess"

 },

 {

 "Action": [

 "support:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSSupportAccess"

 },

 {

 "Action": [

 "inspector:*",

 "ec2:DescribeInstances",

 "ec2:DescribeTags",

 "sns:ListTopics",

 "events:DescribeRule",

 "events:ListRuleNamesByTarget"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonInspectorFullAccess1"

 },

 {

 "Condition": {

 "StringEquals": {

 "iam:PassedToService": [

 "inspector.amazonaws.com"

]

 }

 },

 "Action": [

 "iam:PassRole"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonInspectorFullAccess2"

Maestro – Architecture Overview

 63

 },

 {

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": [

 "inspector.amazonaws.com"

]

 }

 },

 "Action": [

 "iam:CreateServiceLinkedRole"

],

 "Resource": "arn:aws:iam::*:role/aws-service-

role/inspector.amazonaws.com/AWSServiceRoleForAmazonInspector",

 "Effect": "Allow",

 "Sid": "AmazonInspectorFullAccess3"

 },

 {

 "Action": [

 "kms:DescribeKey",

 "kms:ListAliases",

 "kms:ListKeys",

 "workspaces:CreateTags",

 "workspaces:CreateWorkspaceImage",

 "workspaces:CreateWorkspaces",

 "workspaces:CreateStandbyWorkspaces",

 "workspaces:DeleteTags",

 "workspaces:DescribeTags",

 "workspaces:DescribeWorkspaceBundles",

 "workspaces:DescribeWorkspaceDirectories",

 "workspaces:DescribeWorkspaces",

 "workspaces:DescribeWorkspacesConnectionStatus",

 "workspaces:ModifyCertificateBasedAuthProperties",

 "workspaces:ModifySamlProperties",

 "workspaces:ModifyWorkspaceProperties",

 "workspaces:RebootWorkspaces",

 "workspaces:RebuildWorkspaces",

 "workspaces:StartWorkspaces",

 "workspaces:StopWorkspaces",

 "workspaces:TerminateWorkspaces"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonWorkSpacesAdmin"

 },

 {

 "Action": [

 "iam:GenerateCredentialReport",

 "iam:GenerateServiceLastAccessedDetails",

 "iam:Get*",

 "iam:List*",

 "iam:SimulateCustomPolicy",

 "iam:SimulatePrincipalPolicy"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "IAMReadOnlyAccess"

 },

Maestro – Architecture Overview

 64

 {

 "Action": [

 "aws-portal:ViewBilling",

 "budgets:ViewBudget",

 "budgets:Describe*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSBudgetsReadOnlyAccess"

 },

 {

 "Action": [

 "securityhub:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSSecurityHubFullAccess1"

 },

 {

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": [

 "securityhub.amazonaws.com"

]

 }

 },

 "Action": [

 "iam:CreateServiceLinkedRole"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AWSSecurityHubFullAccess2"

 },

 {

 "Action": [

 "guardduty:*"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonGuardDutyFullAccess1"

 },

 {

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": [

 "guardduty.amazonaws.com",

 "malware-protection.guardduty.amazonaws.com"

]

 }

 },

 "Action": [

 "iam:CreateServiceLinkedRole"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonGuardDutyFullAccess2"

 },

 {

Maestro – Architecture Overview

 65

 "Action": [

 "organizations:EnableAWSServiceAccess",

 "organizations:RegisterDelegatedAdministrator",

 "organizations:ListDelegatedAdministrators",

 "organizations:ListAWSServiceAccessForOrganization",

 "organizations:DescribeOrganizationalUnit",

 "organizations:DescribeAccount",

 "organizations:DescribeOrganization"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "AmazonGuardDutyFullAccess3"

 },

 {

 "Action": [

 "iam:GetRole"

],

 "Resource":

"arn:aws:iam::*:role/*AWSServiceRoleForAmazonGuardDutyMalwareProtection",

 "Effect": "Allow",

 "Sid": "AmazonGuardDutyFullAccess4"

 },

 {

 "Action": [

 "apigateway:*"

],

 "Resource": "arn:aws:apigateway:*::/*",

 "Effect": "Allow",

 "Sid": "AmazonAPIGatewayAdministrator"

 },

 {

 "Action": [

 "sts:GetCallerIdentity"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "STS"

 }

]

}

Maestro – Architecture Overview

 66

ANNEX B – ANSIBLE CLIENT

ANSIBLE CLIENT

Ansible is the most popular open source automation tool on GitHub. It is an automation tool used to

configure systems, deploy software, and orchestrate more advanced tasks such as continuous

deployments or zero downtime rolling updates.

In Maestro solution, Ansible is introduced via the respective wizard on the Main Dashboard.

The wizard allows to generate an Ansible client for the selected region and tenant. The result will be

provided as a downloadable zip, containing the dynamic inventory files.

DOWNLOADING ANSIBLE CLIENT

In order to download Ansible Client perform the following steps:

Figure 30 – Ansible Client wizard

1. Start the Ansible Client wizard from the main Maestro Dashboard.

2. Specify tenant and region for which you want to generate the Ansible Client parameters and click

the Next button.

3. In the next window you can review the properties of the file to be downloaded. Click the

Download button to proceed.

4. The downloaded package will be stored in the Downloads folder of your computer.

 2

3

4

Maestro – Architecture Overview

 67

EXECUTING ANSIBLE CLIENT

To configure Ansible Client in order to get the inventory file, follow the instructions provided in the

readme.md file from the downloaded package.

The following software should be installed on the machine where the Ansible Client will be executed:

• Python3 v3.7.1 or later

• pip v19.3.1 or later

• virtualenv v16.1.0 or later

In the current revision of Ansible Client (3.2.100.46) only the guide for Linux systems is present in the

readme.md file. The flow of work for Linux and Windows is described below in this instruction.

For Linux

1. Navigate to AnsibleClient folder using terminal

2. Create virtualenv using the command

virtualenv -p python3 .venv

Note that your OS may have no configured python3 alias. To configure it properly please follow

the instructions by link: https://realpython.com/installing-python/ .

3. Activate virtualenv with the command source .venv/bin/activate

4. Install requirements from the requirements.txt file with command

pip install -r requirements.txt

5. Edit client.config file by providing AWS credentials from the environment.

These credentials should have permissions to invoke lambda function (‘lambda:InvokeFunction’).

#Maestro ansible client config

#Wed Feb 19 10:33:54 UTC 2020

aws_secret_access_key=*******************************

clientId=*******************************

cache.max.age=300

aws_access_key_id=*******************************

lambda.name=autoconf_ansible_meta

lambda.region=eu-central-1

region=AWS-AP-NORTHEAST

tenant=AWS-EPMC-ACM3

6. Save the file.

7. Execute the command python m3_inventory.py

8. This result will be returned:

(.venv) ➜ m3-AnsibleClient-d20c python m3_inventory.py

Ansible DI file has been created by path /Users/user/Downloads/m3-

AnsibleClient-d20c/AWS-EPMC-ACM3.json

9. Your Ansible inventory file is ready and is stored in a file located by path returned in output by

m3_inventory.py script. In the example this is /Users/user/Downloads/m3-AnsibleClient-

d20c/AWS-EPMC-ACM3.json.

For Windows

https://realpython.com/installing-python/

Maestro – Architecture Overview

 68

1. Navigate to AnsibleClient folder using cmd.

2. Check the version of the python. Execute ‘python’:

(venv) C:\Users\Daryna_kozub\Desktop\m3-AnsibleClient-ffe7>python

Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

3. If the version of python is higher than 3.7.0 everything is ok. If the version is less, install

Python3.7+ and use the alias of python3.7 while creating the virtualenv using the command

virtualenv -p python3.7 venv

4. Create virtualenv with the command virtualenv venv

5. Activate virtualenv using the command .\venv\Scripts\activate.bat

6. Install requirements using the command pip install -r requirements.txt

7. Edit client.config file by providing AWS credentials from the environment. These credentials

should have permission to invoke lambda function (‘lambda:InvokeFunction’).

8. Save the file.

9. Execute m3_inventory.py script using the command python m3_inventory.py

(venv) C:\Users\Daryna_kozub\Desktop\m3-AnsibleClient-ffe7>python

m3_inventory.py

Ansible DI file has been created by path C:\Users\Daryna_kozub\Desktop\m3-

AnsibleClient-ffe7/AWS-EPMC-ACM3.json

10. The result has been created and saved to AWS-EPMC-ACM3.json file.

Maestro – Architecture Overview

 69

TABLE OF FIGURES

Figure 1 – Maestro architecture framework .. 6

Figure 2 – Maestro components scheme .. 11

Figure 3 – User permissions management scheme .. 14

Figure 4 – Enabling extensions ... 18

Figure 5 – Installing or removing Metrics extension .. 18

Figure 6 – Memory metrics .. 18

Figure 7 – Adding metrics ... 19

Figure 8 – Filtering resources by tag ... 21

Figure 9 – Manage tags window ... 21

Figure 10 – Marketplace components overview .. 22

Figure 11 – Adding service flow .. 23

Figure 12 – Catalog page .. 23

Figure 13 – Application of monthly tenant quotas ... 25

Figure 14 – Price calculating algorithm ... 26

Figure 15 – Maestro notifications system .. 27

Figure 16 – Notification forming algorithm .. 28

Figure 17 – Notifications page... 28

Figure 18 – Maestro-to-Private agent communication diagram .. 30

Figure 19 – vCloudDirector structural diagram ... 31

Figure 20 – VDC structural diagram .. 31

Figure 21 – vApp template-to-instance relation diagram .. 32

Figure 22 – Disaster recovery scenario .. 33

Figure 23 – On-Premise architecture scheme .. 35

Figure 24 – Maestro Java SDK structure .. 45

Figure 25 – Upload templates window .. 51

Figure 26 – Service catalog page ... 51

Figure 27 – Chef configuration example ... 55

Figure 28 – Init script used by Chef... 56

Maestro – Architecture Overview

 70

Figure 29 – Ansible and Dynamic Inventory flow .. 58

Figure 30 – Ansible Client wizard .. 66

Maestro – Architecture Overview

 71

VERSION HISTORY

Version Date Summary

2.3 June 5, 2023
Screenshots updated, integration versions updated,
permissions for Maestro, Admin Tool updated

2.2 October 20, 2022 Minor details updated, screenshots updated

2.1 March 12, 2021 Minor details updated

2.0 June 17, 2020
Restructured, new sections added, focusing on Mestro3
components

1.4 July 10, 2019 Reviewed, Syndicate concept introduced

1.3 April 18, 2018 Reviewed, several details updated

1.2 January 10, 2018 Updated the Permissions annex

1.1 December 11, 2017 Added the Deployment Models section

1.0 November 04, 2017 Initially published

