

Maestro

Command Line Interfaces

Developer’s Guide

July 2020

M3DG-15

Version 1.5

Maestro – Command Line Interface

 2

Contents

CONTENTS ... 2

PREFACE .. 4

ABOUT THIS GUIDE .. 4

AUDIENCE ... 4

THE STRUCTURE OF THIS GUIDE .. 4

1 INTRODUCTION TO MAESTRO3 .. 5

1.1 MAESTRO3 MAIN FEATURES AND CAPABILITIES ... 5

1.2 API-FIRST APPROACH ... 7

1.3 MAESTRO3 SDK.. 7

1.4 ANSIBLE AND DYNAMIC INVENTORY .. 7

2 MAESTRO3 CLI .. 8

2.1 INSTALLATION AND CONFIGURATION ... 8

2.1.1 Prerequisites .. 8

2.1.2 Installation .. 8

2.1.3 Configuration... 8

2.2 USING MAESTRO3 CLI .. 9

2.3 MAESTRO CLI: INFORMATION FOR DEVELOPERS .. 9

2.3.1 Commands definition file ... 10

2.3.2 CLI update flow .. 11

2.3.3 Delivery flow .. 11

3 M3 SDK .. 12

3.1 CONFIGURATION.. 13

3.1.1 Maven Configuration for Maestro JAVA SDK... 13

3.1.2 Entry Point ... 13

3.1.3 Typical Working Scenario ... 13

3.1.4 Maestro3 SDK Structure ... 14

3.2 AUTHORIZATION ALGORITHM ... 14

4 SUPPORT AND DEVOPS TOOLS ... 16

4.1 TERRAFORM AND TERRAFORM PROVIDER .. 16

4.1.1 Integration with Terraform .. 16

4.1.2 Terraform Provider for Maestro3 ... 17

4.2 CHEF .. 19

4.2.1 Configuring Chef .. 19

4.2.2 Work Principles .. 20

4.3 ANSIBLE .. 21

5 M3ADMIN .. 24

5.1 ACCESSING M3ADMIN CLI ... 24

5.2 M3ADMIN CLI COMMANDS USAGE .. 24

5.3 USING M3ADMIN VIA API .. 24

5.3.1 Accessing m3admin API ... 25

5.3.2 Checking m3admin API Information ... 25

5.3.3 Sending Requests via m3admin API .. 26

Maestro3 - API Reference Guide

 3

6 LAMBDA API ... 27

6.1 ENTRY POINT .. 27

6.2 TYPICAL WORKING SCENARIO ... 27

6.2.1 Prerequisites .. 27

6.2.2 Using the SDK .. 27

6.2.3 Using AWS IAM for Authorization... 28

6.3 AUTHENTICATION ALGORITHM .. 29

6.3.1 Authentication with Corporate SSO .. 29

6.3.2 Authentication with Google ... 29

6.4 HTTP HEADER .. 29

ANNEX A – ANSIBLE CLIENT.. 31

ANSIBLE CLIENT .. 31

DOWNLOADING ANSIBLE CLIENT ... 31

EXECUTING ANSIBLE CLIENT ... 31

TABLE OF FIGURES ... 33

VERSION HISTORY .. 34

Maestro – Command Line Interface

 4

PREFACE

ABOUT THIS GUIDE

The guide describes the non-GUI interfaces and kits (API, SDK, CLI) implemented for the Maestro3

application.

AUDIENCE

The guide is targeted on the developers and architects, working with Maestro3 application with the

command line tools.

THE STRUCTURE OF THIS GUIDE

The guide consists of the following sections:

1. Introduction to Maestro3 provides the general overview of the solution, its main capabilities and

tools.

2. Maestro3 CLI explains how to install, configure, and use Maestro3 command line inteface.

3. M3 SDK describes the main points of M3 SDK configuration and algorhythms.

4. Support and DevOps Tools describes tools and approaches used for Maestro3 support and

DevOps operations.

5. m3admin provides the information about the Maestro3 administrative functionality tool.

6. Lambda API shows how to develop lambda-based plugins and extensions for working with the

Maestro3 dynamic UI.

Maestro – Command Line Interface

 5

1 INTRODUCTION TO MAESTRO3

Maestro3 application – is a fault-tolerant system for managing distributed hyper-converged virtual

infrastructures. The system is based on event-driven architecture leveraging AMQP protocol (Advanced

Message Queuing Protocol), powered by RabbitMQ software application for working with message

queuing.

1.1 MAESTRO3 MAIN FEATURES AND CAPABILITIES

Maestro3 is a Cloud Management solution which enables effective, unified, and controllable self-service

access to hybrid virtual infrastructures, based on both public and private clouds.

The solution provides users with role-based access to both web and native mobile applications (for Android

and Apple). It includes a wide range of events audit, optimization, costs, and billing reports to enable high

transparency, accountability, and pro-active optimization for your resources in Cloud.

Maestro3 purpose and functionality is based on the three pillars, each allowing to establish a high level of

virtual infrastructures provisioning, monitoring, and audit:

• Orchestration, provisioning, brokerage: Maestro3 provides a single entry point for creating,

reviewing, and managing virtual resources hosted at one or several Cloud providers, both public or

private, in a unified way.

• Costs visibility, audit, reduction: Maestro3 includes a set of tools enabling costs visibility, review

and control in a convenient unified way for all supported cloud providers.

• Governance, risk management, compliance (GRC): With access control, inventory, monitoring,

automation, and other tools, Maestro3 is able to effectively support your solutions for modern

enterprise-level demands and challenges in GRC.

Maestro3 has several interfaces for communicating with different types of users:

• Maestro3 User Interface is a web and mobile application providing users with access to Maestro3

capabilities. The main feature of Maestro3 UI is usability and visibility which give any cloud user an

easy and comprehensible access to his/her cloud resources regardless of the expertise level and

working position of this user.

• Maestro3 SDK is a programming interface to enable automation and integration with Maestro3

user capabilities.

• Maestro3 CLI is intended to perform basic commands via remote command line by sending server

requests without the need to install 3rd party utilities.

• Maestro3 Admin Interface – a CLI tool available only to Maestro3 administrative users and

allowing Maestro3 configuration (clouds, tenants, users, etc.). The main purpose of the Maestro3

Admin is to provide the highest possible security level for the Maestro3 application.

• Dynamic inventory is a tool that allows using Ansible native management tools.

• Terraform provider is a tool that allows using Terraform native management tools.

Maestro – Command Line Interface

 6

Maestro3 is a complex system, using a big set of components, facing specific needs and tasks of the

application.

Figure 1 – Maestro3 components scheme

In this document, we focus on the command line tools used for working with such Maestro3 components

as Maestro3 API, Maestro3 dynamic UI, Maestro3 SDK, dynamic UI forms, Terraform, Chef, and Ansible.

Complex structure of Maestro3 components requires the multi-level system of development tools. Maestro3

provides these development tools, namely

• Maestro3 Application Programming Interface (API) as a part of API-first approach,

• Maestro SaaS Software Developer’s Kit (SDK) implemented using JSON-RPC as a Remote

Procedure Call (RPC) protocol,

• Maestro3 Command Line Interface (CLI) as a unified tool to manage your Maestro services and

resources. Allows working with the whole Maestro3 functionality without applying the Maestro3

user interface.

Maestro – Command Line Interface

 7

1.2 API-FIRST APPROACH

As part of the Maestro3 system, we follow the concept of API First.

Such a concept implies that at the beginning of any application development phase a certain API should

be created. Then, on top of this API, we develop additional necessary modules.

In such a way the Maestro3 API was implemented, providing Maestro3 SDK as an additional module on

top of it.

1.3 MAESTRO3 SDK

Initially the Maestro3 functionality is supported in the Maestro3 SDK, and only then it is implemented on

the UI. Thus, SDK is the keystone for all Maestro3 functionality.

Maestro3 SDK is based on JSON RPC protocol – a remote procedure call protocol encoded in JSON. The

protocol is similar to XML-RPC and defines a few data types and commands. JSON-RPC allows for

notifications (data sent to the server that does not require a response) and for multiple calls to be sent to

the server which may be answered out of order.

Based on this protocol, a simple and flexible working SDK architecture was created.

The user, working with Maestro3 SDK, contains a client. The client contains some managers. Managers

contain some methods. The client is a ready-made entity that can do anything. Each of managers is

responsible for a certain task, i.e. a certain manager for reporting, a manager for a private cloud, a manager

for working with Terraform, etc.

In case a completely new functionality should be added in the system, a new manager is created. This

manager is responsible for a specific new function. The methods required for performing this function are

included to this manager as well.

The JSON RPC protocol is used in such a case, allowing to rapidly expand the functionality. Maestro3 SDK

collects the necessary data and sends it to a server via HTTP or RabbitMQ protocols (both are supported

in Maestro3 SDK). The server processes these requests and returns responses.

Security of data transfer is ensured by the AES encryption.

1.4 ANSIBLE AND DYNAMIC INVENTORY

Ansible is an automation system for provisioning and configuring infrastructure, allowing to install software

on virtual machines. It can also manage large clusters of VMs on different cloud providers.

Maestro3 provides the possibility to generate a dynamically assembled list of virtual machines via API that

is used by Ansible DI via self-service.

Ansible Dynamic inventory is a tool allowing setting up configuration for several instances. It requires a list

of instances to be configured. Having the necessary list, Ansible can start working with it to configure the

given instances.

Together with other Maestro3 features, the product allows solving task which can be covered by Ansible

Tower.

Maestro – Command Line Interface

 8

2 MAESTRO3 CLI

Maestro3 Command Line Interface (CLI) is a unified tool to manage your Maestro services and resources.

It allows working with multiple cloud resources by means of one simple tool that is easy to use and configure

and includes the functionality for creating and using scripts.

2.1 INSTALLATION AND CONFIGURATION

2.1.1 Prerequisites

To install m3 cli assumed, you need Python3.6+, pip and virtualenv installed.

2.1.2 Installation

This is the m3 cli installation command:

pip install https://m3-cli-distribution.s3.eu-central-1.amazonaws.com/m3-1.0.0.zip

this command allows installing m3 cli from the git source:

pip install git+https://git.epam.com/epmc-eoos/m3-cli.git@master

Access to epmc-eoos/m3-cli repo is also required.

2.1.3 Configuration

To use m3 cli, you must set these environment variables:

• M3SDK_ACCESS_KEY: Specifies an M3 access key associated with Maestro3 user,

• M3SDK_SECRET_KEY: Specifies the secret key associated with the access key. This is

essentially the "password" for the access key.

To get your credentials, you must login to Maestro3 and perform these steps:

1. Switch to My Account page.

2. Start the SDK Keys wizard.

3. Specify access key name and expiration time for the credentials.

4. Obtain your credentials and export access key to environment variable M3SDK_ACCESS_KEY,

and secret key to M3SDK_SECRET_KEY

These environment variables could be used to override default m3 cli values:

• M3SDK_ADDRESS specifies the address of Maestro3 environment. Default value: actual

production environment.

• M3SDK_COMMANDS_FILE specifies the path to the file containing the actual group, commands,

and parameters definitions. Default value: internal application path.

Maestro – Command Line Interface

 9

2.2 USING MAESTRO3 CLI

Maestro3 CLI is an easy-to-use tool innately understandable for users who have any expertise of working

with command line tools.

All Maestro3 CLI commands have this structure:

m3 <group> <command> [parameters]

The parameters are of two kind – required and optional. Required parameters must be specified in order

for the command to be executed. Optional parameters ae necessary to get more specific command output.

If you specify a wrong parameter, the command is not executed, and an error is returned.

You can get the specific information about all Maestro3 commands by the help command.

The synopsis for all commands shows its parameters and their usage. Required parameters are marked

with the star (*) character.

2.3 MAESTRO CLI: INFORMATION FOR DEVELOPERS

The Maestro3 CLI tool is designed to provide dynamic command line interface based on commands

configuration declared in commands_def.json file.

The sequence diagram is displayed below.

Figure 2 – Maestro3 CLI structure

Maestro – Command Line Interface

 10

2.3.1 Commands definition file

The commands definition file (commands_def.json) is a file that contains set of groups, commands in the

groups and parameters of a commands that could be executed via CLI.

Here is an example of how commands and command groups are decomposed:

1. The root object groups encloses all group declarations.

2. groups-name-1 is a name of the first group defined in a file. It is used in CLI like m3 groups-name-

1. Each group object contains help and commands attributes.

3. command-name-1 is a name of the first command defined in a group. This is used in CLI like m3

groups-name-1 command-name-1. Each group object contains help and parameters attributes.

4. parameter-1 is a name of the first parameter defined in a command. This is used in CLI like m3

groups-name-1 command-name-1 --parameter-1 <parameter_value>. Each parameter object

contains help and required attributes. The required property set to true means that the

parameter is required.

{

 "groups": {

 "group-name-1": {

 "help": "This is an example help for the group \"group-name-1\"",

 "commands": {

 "command-name-1": {

 "help": "This is an example help for a command \"command-name-1\"",

 "parameters": {

 "parameter-1": {

 "help": "Test help for the parameter \"parameter-1\"",

 "required": true

 }

 }

 },

 "command-name-2": {

 "help": "This is an example help for a command \"command-name-2\"",

 "parameters": {

 "parameter-1": {

 "help": "",

 "required": true

 }

 }

 }

 }

 },

 "group-name-2": {

 "help": "This is an example help for the group \"group-name-2\"",

 "commands": {}

 }

 }

}

Maestro – Command Line Interface

 11

2.3.2 CLI update flow

1. Update commands_def.json file with new group/commands/parameters that correspond to the

current release.

2. Update the version attribute in setup.py.

3. Update CHANGELOG.md with changes made to commands configuration.

2.3.3 Delivery flow

1. Change directory to the project root folder. File setup.py should be in the same folder as you are

2. Prepare the dist with the command: python setup.py sdist --formats=zip.

3. Login to epmc-eoos AWS account.

4. Update the file m3-<version>.zip in S3 bucket named m3-cli-distribution.

Maestro – Command Line Interface

 12

3 M3 SDK

Maestro SaaS Software Developer’s Kit (SDK) has been implemented using JSON-RPC as a Remote

Procedure Call (RPC) protocol. It uses JSON for serialization and has been chosen due to its simplicity,

lightweight and cleanness, among other advantages.

The protocol works by sending a request to a server. The client is typically a software application, intended

to call a single method of a remote system. Multiple input parameters can be passed to a remote method

as an array or an object, whereas the method itself can return multiple output data as well.

A remote method is invoked by sending a request to a remote service using HTTP or a TCP/IP socket

(starting from version 2.0). When using HTTP, the content-type can be defined as application/json.

All transfer types are single objects, serialized using JSON. A request is a call to a specific method provided

by a remote system. It must contain three certain properties:

• method – a string with the name of the method to be invoked

• params – an array of objects to be passed as parameters to the defined method

• id – a value of any type, which is used to match the response with the request it is replying to.

The receiver of the request must reply with a valid response to all received requests. A response must

contain the properties mentioned below.

• result – the data returned by the invoked method. If an error occurred while invoking the

method, this value must be null.

• error – a specified Error code if there was an error invoking the method, otherwise null.

• id – the id of the request it is responding to.

Since there are situations where no response is needed or even desired, notifications were introduced. A

notification is similar to a request except for the id, which is not needed because no response will be

returned. In this case the id property should be omitted or be null.

There are different ways to implement API for the application. For example, REST-based API means that

each unique URL is a representation of some object or resource. A user can get the contents of that object

using an HTTP GET method, to delete it, then use POST, PUT, or DELETE to modify the object (in practice

most of the services use POST for this). REST is great for public-facing APIs, intended for use by other

developers. They can be designed in accordance with common standards, as to not require a lot of

preexisting knowledge about the service that is going to be used.

Our main goal was to develop a lightweight, well-specified interface that does not have direct access to

data but performs a remote call of Orchestration functionality.

These are advantages of JSON-RPC:

• Unicode – both JSON and JSON-RPC support Unicode out-of-the-box,

• Transport-independent – JSON-RPC can be used with any transport socket: TCP/IP, HTTP,

HTTPS, etc.,

• Direct support of Null/None,

• Support of named/keyword parameters,

• Built-in request-response matching ("id"-field),

• Error codes: ranked and well specified, covering a wide spectrum of possible exceptions.

• Notifications.

Maestro – Command Line Interface

 13

All procedure calls are strictly atomic and return a well specified, determined result. Clients are not required

to know procedure names and the specific order of arguments, because the specifics of JSON-RPC is

hidden within our implementation to make the SDK more convenient for use.

3.1 CONFIGURATION

3.1.1 Maven Configuration for Maestro JAVA SDK

Add the following within the <dependencies> section of your POM:

 <dependencies>

 <dependency>

 <groupId>com.m3.sdk</groupId>

 <artifactId>m3-sdk</artifactId>

 <version>1.0-SNAPSHOT</version>

 </dependency>

 </dependencies>

The artifacts are available via EPAM Maven Repository.

<repositories>

 <repository>

 <id>artifactory.epam.com</id>

 <name>artifactory.epam.com-releases</name>

 <url>http://artifactory.epam.com/artifactory/EPM-CIT</url>

 </repository>

 </repositories>

3.1.2 Entry Point

The entry point for Maestro3 Java SDK is M3Sdk. It can be reached by the following

address: com.m3.sdk.

3.1.3 Typical Working Scenario

1. Create a client

IM3client client =

M3Sdk.client(serverContextProvider, clientContextProvider, credentialsProvider, access

KeyProvider);

2. Execute command

M3ApiResult result = client.<commandName>(

 “parameter1”,

 “parameter2”,

 …);

http://artifactory.epam.com/

Maestro – Command Line Interface

 14

3.1.4 Maestro3 SDK Structure

This is the structure of Maestro3 SDK, which is available in the project repo.

Figure 3 – Maestro Java SDK structure

3.2 AUTHORIZATION ALGORITHM

The SDK client for Maestro API uses three headers to provide authorization information into the server.

• Maestro-Authentication - the request signature generated by M3 SDK based on Maestro-

accessKey provided by SDK client.

• Maestro-request-identifier - the client identifier provided by the SDK Client and used for the

security purpose.

• Maestro-accessKey - the identity that should be registered in EC2 parameters store and used to

verify the client. To register the identity, please address the M3 admin team.

The authorization is performed according to the following scenario:

1. Get the long representation of the request date from <Maestro-date> header:

long date = new Date().getTime();

Maestro – Command Line Interface

 15

2. Construct SecretKeySpec from the secretKey and date

byte[] bytes = Charset.forName(“UTF-

8”).encode(String.format(“%s%s”, secretKey, date)).array();

SecretKeySpec secretKeySpec = new SecretKeySpec(bytes, “HmacSHA256”);

3. Generate the sign:

Mac mac = Mac.getInstance(“HmacSHA256”);

Mac.init(secretKeySpec);

byte[] message = mac.doFinal(String.format(“M3-

POST:%s:%s”, accessKey,date).getBytes());

StringBuilder builder = new StringBuilder();

for (final byte element : message) {

    builder.append(Integer.toString((element & 0xff) + 0x100, 16));

}

String sign = builder.toString();

4. The new String(sign) is <Maestro-Authentication> header

On the Server side, it is needed to get the same signature and compare it with the Client’s signature.

Java SDK sample:

If you use Maestro3 Java SDK, all of the above is performed inside M3Client class.

M3Sdk.client(new M3StaticServerContextProvider("serverUrl"),

new M3StaticClientContextProvider(new M3ClientContext("clientIdentifier")),

        new M3StaticCredentialsProvider("accessKey", "secretKey"),

new M3StaticAccessKeyProvider("accessKey"))

Also, you can replace static providers with your own implementations of IM3ServerContextProvider,

IM3ClientContextProvider, etc.

Maestro – Command Line Interface

 16

4 SUPPORT AND DEVOPS TOOLS

4.1 TERRAFORM AND TERRAFORM PROVIDER

The main IaC toos taken on board by Maestro3 is Terraform by HashiCorp – a cross-platform solution

which allows managing complex infrastructures hosted in multiple clouds. Terraform is a tool for building,

changing, and versioning infrastructure in a safe and efficient manner.

Terraform is built on a plugin-based architecture, enabling developers to extend Terraform by writing new

plugins or compiling modified versions of existing ones.

The main principle of this tool is in Infrastructure as a Code approach, i.e. infrastructure parameters are

described in a template, in a JSON and HCL formats. Both formats are supported by Maestro3.

4.1.1 Integration with Terraform

Maestro3 integration with Terraform provides its users with ability to:

• store templates in AWS S3 and in GitHub and upload templates from the repository

• automatically react to updates in GitHub (auto plan and auto apply)

• plan and apply templates

• review and validate logs

• lock templates for further modification, planning or applying

• share and re-use templates

M3 supports the following Terraform functionality:

• ability to upload templates through the UI

• possibility to edit templates via Maestro3 UI, it is possible to receive information about the

resources that were deployed and monitor the logic of the template

• imposition of limitations for specific users, i.e. for users and for regions.
.

To register the GitHub based template on Maestro3, the following parameters should be specified:

• source type (GitHub) – only after this, the necessary input field will appear,

• your GitHub username and password,

• URI of the relevant GitHub repository and its branch,

• folder where your Terraform templates are stored,

• (optional) Terraform variables and their values to be used as default ones when the template is

applied.

You must also select what actions Maestro3 will take once the template is updated in the GitHub repository

(None, Auto plan, or Auto apply):

Once registered, the both GitHub and AWS-based Terraform templates can be reviewed in the Catalog

page with any version of Maestro3 Orchestrator. Terraform templates stored in GitHub are updated and

validated automatically once they are changed in the repository – you do not need to do it specifically for

Maestro3.

Terraform allows to automate all changed and provide versioning of the infrastructure.

Terraform CLI is a free tool and can be used by command line utility.

Maestro – Command Line Interface

 17

The table below lists the available stack templates actions and their basic details:

Action Description

Upload Upload a stack template to Maestro3

Plan Create execution plan and estimate the results of template application.

Apply Apply the stack template on infrastructure

Remove Deletes the stack template from Maestro3

Lock Locks the template from other users, so that they cannot modify or remove it

View execution log Display the execution logs of the template

Download logs Download template execution or planning logs in a zip archive

4.1.2 Terraform Provider for Maestro3

Terraform is a framework for configuration, but one Terraform template cannot be written in a unified way

so that it could be used for different cloud providers (the template for AWS will not work if you deploy it in

Azure). Maestro3 provides its own custom tool - Terraform-Provider that gives the users possibility to

work with the provided API so that they can deploy the infrastructure with a single template on any cloud

provider supported by Maestro3, including private OpenStack region.

Working with Terraform Provider for OpenStack

Requirements:

The following software should be installed before you use Terraform:

• Terraform 0.12+.

• Go 1.13 (to build the provider plugin).

To start using the provider, do the following:

1. To build the Terraform Provider plugin, run:

#linux

go build -o terraform-provider-m3_v0.2

#windows

go build -o terraform-provider-m3_v0.2.exe

2. Move the plugin to the user plugins directory (you can find more details here):

#linux

mv terraform-provider-m3_v0.2 ~/.terraform.d/plugins

#windows

move terraform-provider-m3_v0.2.exe %APPDATA%\terraform.d\plugins

3. Specify the provider settings:

provider "m3" {

 url = "http://ip:port/maestro/api/V3"

 access_key = "access_key"

 secret_key = "secret_key"

 user_identifier = "user_identifier"

}

https://www.terraform.io/downloads.html
https://golang.org/doc/install
https://www.terraform.io/docs/plugins/basics.html

Maestro – Command Line Interface

 18

The current implementation supports the limited scope of operations, but the existing configuration is
enough to run a VM and create an image.

Below, you can find an example of the provider usage by one of our colleagues who contributed the
feature:

These parameters are enough to run an instance:

resource "m3_instance" "my-server" {

 image = "CentOS7_64-bit"

 instance_name = "test_name"

 region = "EPAM-OPENSTACK-3"

 tenant_name = "EPMC-EOOS"

 shape = "MINI"

 key_name = "sshkey"

}

These parameters are enough to create an image:

resource "m3_image" "my-image" {

 tenant_name = "EPMC-EOOS"

 region_name = "EPAM-OPENSTACK-3"

 image_name = "ImageFromTf"

 source_instance_id = "ecs00100019F"

 description = "Here is image desccription"

}

Maestro – Command Line Interface

 19

4.2 CHEF

Chef is an open source automation tool that allows to quickly set up and configure the necessary

infrastructure, and to change the configuration if needed. System configuration files that describe how Chef

manages server applications are called recipes. Several recipes grouped together constitute a cookbook.

Currently this functionality is implemented and working in a test mode on the AWS cloud, supporting Jenkins

and Artifactory automation systems.

Functionality was tested on AWS cloud using the following parameters:

OS Shape Role

CentOs7 Medium artifactory-acs

Ubuntu16 Medium jenkins_epc

All profiles have some requirements to instance OS/Shape.

In the current implementation, validation for these requirements is not supported, so some

combination for OS/Profile/Shape may not be working.

4.2.1 Configuring Chef

See an example of configuring Chef in Maestro3 below:

1. A region should be activated with parameters, set specifically for working with Chef. To get an access

to such a region or to configure Chef for the already activated project, send a specified request to the

Maestro3 support team.

Thus, when launching an instance, this region should be specified in a Region field together with other

parameters for running the instance.

2. Select the Set chef configuration checkbox and specify the Chef Profile. The profile defines the

configuration that should be installed on the instance.

3. On the screen you can review information about the Сhef Profile, which was specified on a previous

step.

4. The Autoconfiguration tab is added to the Content View section of the specified instance in AWS

cloud. It contains useful information about chef role (not available at the moment), state and chef

server. As a result, the installation of the software selected depending on the Chef Profile was

successfully performed on the instance.

5. In order to access and interact with the interfaces of the installed software (in this case - artifactory

and Jenkins), perform the following actions:

a. Copy the public DNS name of the instance;

b. Open the User Interface of the launched application, using the copied DNS name:

• For Jenkins: <DNS_NAME>:8080

• For artifactory: < DNS_NAME > :8081/artifactory.

Maestro – Command Line Interface

 20

4.2.2 Work Principles

When a software is being installed on an instance, an init script is added to it. The instance gets registered

in Maestro3. After that, communication between the Chef server, Maestro3 server, and a Chef client is

established.

See the scheme for an init script used by Chef below:

Figure 4 – Init script used by Chef

Maestro – Command Line Interface

 21

The table below lists required variables for the init script.

Variable Placeholder Description Example

CONF_URL @VAR_EP_ORCH_IP URL endpoint to
Orchestrator

https://config.cloud.epam.co
m/orchestration-dev

orch_url @VAR_CONFIG_URL URL endpoint to
Orchestrator
(when VAR_ACS_ENAB
LE=false)

https://qa.cloud.epam.com

VIRT_TYPE @VAR_VIRT_TYPE Virtualization type OPEN_STACK/AZURE/AWS/G
OOGLE

NODENAME @VAR_NODENAME instanceId ecs00012345678

ACS_ENABLE @VAR_ACS_ENABLE autoConfigurationDisa
bledType from Projects

true/false

CHEF_PROJECT @VAR_PROJECT_CHEF Dedicated Chef server
is used

true/false

CHEF_SRV @VAR_CHEF_SERVER Chef server fqdn acs.cloud.epam.com

CHEF_ENV @VAR_CHEF_ENV Chef environment development/production

CHEF_ORG @VAR_CHEF_ORG_NAME Chef organization
name

epam-dev/epam-qa/epam

SSH_USER @VAR_SSH_USER Default OS username ubuntu/admin/centos

USER_SCRIPT @VAR_USER_SCRIPT String containing links
to user scripts and
launch parameters, if
used

/api/files/0aca25d4-ffc8-
46c0-907a-
0dc4f21cd98a/user-
init.sh:fuu#bar

NOTIF_URL @VAR_NOTIF_URL Used as a signal that
the VM has entered
the running condition

https://qa.cloud.epam.com/a
pi/openstack/notification/ru
nning

OS_CHECKSUM @VAR_NOTIF_CHECKSUM Used together
with NOTIF_URL

SXVZSjl0czlJbENFSmxpdXFnSk
0wUlBo

4.3 ANSIBLE

As an automation system for provisioning and configuring infrastructure, Ansible allows installing software

on virtual machines and manage large clusters of them on different cloud providers.

A distinctive feature of Ansible is that the system has a server, which does not contain the client side, i.e.

you do not need a client to be installed on a virtual machine. Ansible accesses virtual machines via SSH,

and is intended for working with Linux machines, though it is possible to use it for Windows as well. Thus,

a Linux server has access to a virtual machine via SSH and performs pre-defined tasks there.

The tasks which should be performed on a virtual machine are described in playbooks. A playbook is

structured on lambda, which describe conditions of the necessary tasks (similar to a template or a stack).

Ansible also works with host groups where hosts are described/registered. The host group defines virtual

machines that Ansible should affect. Grouping is necessary to define the scope of work, i.e. a playbook is

launched for a certain group.

Every host group is created manually in a JSON format and contains the following:

• name of the host group

• DNS names or IP addresses of the VMs to perform automation configuration on.

Maestro – Command Line Interface

 22

For example, to install a new Java software version on a group of Jenkins slaves,

you can define the conditions in a playbook. Running a playbook will make Ansible

go to all hosts and perform the same playbook on them.

Besides, Ansible includes the Dynamic Inventory feature that enables retrieving information from dynamic

sources. In this case, dynamic groups are created on the fly using cloud providers (Maestro3). You can

configure dynamic groups to any criteria - keys, security groups, tags.

Maestro3 works with dynamic groups, their management, and provisioning of these groups to users.

Figure 5 – Ansible and Dynamic Inventory flow

In Maestro3 solution, Ansible is introduced via the respective wizard on the Main Dashboard.

The wizard allows to generate an Ansible client for the selected region and tenant. The result will be

provided as a downloadable zip, containing the dynamic inventory files.

To start working with Ansible client, select Ansible wizard, and perform the required steps. For a detailed

information, please see Annex A.

After you perform the necessary steps, you obtain a downloadable .zip file. The zip file contains a

configuration file and a Python script with lambda that configures a dynamic inventory file.

The dynamic inventory file is a list of virtual machines, including their IPs, DNS addresses and all other

VM properties grouped by parameters, e.g. tags, keys, owners, security groups etc.

To make the Python script work, correct it according to your parameters. After that, launch the script using

CLI. It will start sending the parameters, created during the generation of this Ansible client, to lambda.

Knowing the parameters, lambda describes virtual instances in a specified tenant and region. Lambda

sends a request to a TCP service for obtaining a list of all VMs. Upon obtaining the data, lambda groups it

according to the specified keys, loads the dynamic inventory file into S3 and send a link to this file to Ansible

Client.

Maestro – Command Line Interface

 23

Resign URL, a temporary link to the file stored in S3 is signed with the credentials of this lambda and

expires after 15 minutes on creation. If it is not obtained by the client within 15 minutes, the file becomes

unavailable, as the infrastructure is updated every 15 minutes.

Upon loading the file, Ansible starts to analyze the file and defines what software should be configured on

which VMs. Information about the software is obtained from the playbook, the list of VMs to be configured

is obtained from the Dynamic Inventory file.

The list of VMs with properties grouped by virtual keys, is provided to Ansible.

Ansible is the most popular open source automation tool on GitHub. It is an automation tool used to

configure systems, deploy software, and orchestrate more advanced tasks such as continuous

deployments or zero downtime rolling updates.

Maestro – Command Line Interface

 24

5 M3ADMIN

m3admin is a tool that provides all administrative functionality that Maestro3 environment requires to

operate successfully. There is a set of commands, divided into groups, which allow Maestro3 environment

administrator to configure the environment to operate in a way that a customer requested.

The m3admin tool can be used via command line interface and via API.

5.1 ACCESSING M3ADMIN CLI

By default, m3admin tool is available via web by the following link: https://admin.maestro3.tools/.

The access is restricted and available to authorized users only.

You can use it manually by logging in with provided credentials, or automatically via http requests.

5.2 M3ADMIN CLI COMMANDS USAGE

Each m3admin command call consists of the following elements:

m3admin [group] [subgroup][command] [arguments]

• Group: defines the general area of the command application (e.g. ‘aws’ – commands related to

AWS, ‘billing’ – commands related to billing configuration, etc.).

• Subgroup: defines a specific area within some groups (e.g., ‘environment setting’ – the setting

subgroup within the environment group allows to manage environment settings).

• Command: the actual command string defining the action to be performed

(e.g., ‘add_default_ tenant_group’).

• Arguments: define the specific object of the command and/or the values to be set for it.

Below, you can find an example of a command call in m3admin. The command will delete tenant-related

resources in a tenant’s AWS account.

m3admin aws deactivate --bundle_name ${BUNDLE_NAME}

For each of the groups and commands, you can use the –help parameter that will display all available

options with comments.

Detailed descriptions of the m3admin commands are in the Admin CLI User Guide.

5.3 USING M3ADMIN VIA API

The Maestro3 Administration API (further referred to as m3admin API) is an API that provides the possibility

to configure Maestro3 installation. The functionality of m3admin API is similar to the m3admin CLI.

There is a restriction mechanism that will limit access to some command groups (like AWS, Azure,

OS, etc.). This restriction functionality is fully configurable.

https://admin.maestro3.tools/

Maestro – Command Line Interface

 25

5.3.1 Accessing m3admin API

The m3admin API is secured with SSL encryption (HTTPS protocol is used).

User credentials are required to interact with m3admin API. Basic Authentication is used as an

authentication method.

The access to API can be checked using API testing tool like Postman, Insomnia or curl.

Curl example:

curl --request GET --url https://${host}/ --header 'authorization: Basic

${credentials}'

Variable credentials in the example above are represented by a placeholder for credentials, encoded in

Base64 in the following format: username:credentials.

m3admin API credentials are provided by Maestro3 Support Team by request.

5.3.2 Checking m3admin API Information

${host}/ GET call returns API summary which contains the following items:

Response parameter Description

api_version The current version of m3admin API

message The summary message

available_groups The dataset with currently available groups,
commands in these groups, and their
parameters.

The example is displayed in the code snippet below:

{

 "available_groups": {

 "azure": [

 {

 "name": "validate_vm_counters",

 "description": "Checks if counters values correspond to real instances

quantity",

 "parameters": [

 {

 "name": "tenant_name",

 "required": true,

 "description": "Tenant name"

 }

],

 "path": "/azure/validate_vm_counters",

 "method": "POST"

 },

 ...

],

 "aws": [...]

 },

 "api_version": "2.4.67",

 "message": "This is the Maestro3 administration tool API. To request support, please

contact Maestro3 Support Team"

}

Maestro – Command Line Interface

 26

5.3.3 Sending Requests via m3admin API

The m3admin API suggests a similar interface to m3admin CLI with the following mapping of commands:

CLI command:

m3admin azure validate_vm_counters --tenant_name TENANT_NAME

API command using `curl`:

curl --request POST \

--url https://${host}/azure/validate_vm_counters \

--header 'authorization: Basic b25zaGE6YWFjOWEyOTktY2EHjKYhjkGJKMDItM2NhNTc3NDdlZmFm'

\

--header 'content-type: application/json' \

--data '{

"tenant_name": "EPMC-EOOS"

}'

The m3admin API validates incoming requests. In case of parameters mismatch, the tool will describe the

The example below shows the parameter mismatch response:

HTTP/1.1 400 Bad Request

Content-Type: text/html; charset=UTF-8

{

 "status": "FAILED",

 "required_parameters": [

 {

 "name": "tenant_name",

 "required": true,

 "description": "Tenant name"

 }

],

 "message": "Not all required parameters specified"

}

Maestro – Command Line Interface

 27

6 LAMBDA API

Lambda API allows managing instances, storage volumes, tags, and getting reports and metrics information

by addressing the respective Lambda functions that enable Maestro3 functionality.

Lambda API gives Maestro3 users the tool for developing their plugins and extensions for working with

Maestro dynamic UI.

Below we will describe Lambda API based on Maestro3 API and provide auto generated JS SDK

as an example. Maestro3 API offers a possibility to use other languages as well.

6.1 ENTRY POINT

The entry point for Maestro3 API is MaestroAPIClient. The pattern for the entry point is as follows:

<API G id>.execute-api.<aws region>.amazonaws.com

6.2 TYPICAL WORKING SCENARIO

6.2.1 Prerequisites

For the JavaScript SDK to work, your APIs need to support CORS. The Amazon API Gateway developer

guide explains how to setup CORS for an endpoint. The generated SDK depends on third-party libraries.

Include all of the scripts in your webpage

<script type="text/javascript" src="lib/axios/dist/axios.standalone.js"></script>

<script type="text/javascript" src="lib/CryptoJS/rollups/hmac-sha256.js"></script>

<script type="text/javascript" src="lib/CryptoJS/rollups/sha256.js"></script>

<script type="text/javascript" src="lib/CryptoJS/components/hmac.js"></script>

<script type="text/javascript" src="lib/CryptoJS/components/enc-base64.js"></script>

<script type="text/javascript" src="lib/url-template/url-template.js"></script>

<script type="text/javascript" src="lib/apiGatewayCore/sigV4Client.js"></script>

<script type="text/javascript" src="lib/apiGatewayCore/apiGatewayClient.js"></script>

<script type="text/javascript" src="lib/apiGatewayCore/simpleHttpClient.js"></script>

<script type="text/javascript" src="lib/apiGatewayCore/utils.js"></script>

<script type="text/javascript" src="apigClient.js"></script>

6.2.2 Using the SDK

To initialize the most basic form of the SDK:

var apigClient = apigClientFactory.newClient();

Calls to an API take the form outlined below. Each API call returns a promise, that invokes either a
success or failure callback.

var params = {

 //This is where any header, path, or querystring request params go. The key is the

parameter named as defined in the API

 param0: '',

 param1: ''

};

var body = {

https://github.com/aws-samples/aws-api-gateway-developer-portal/blob/master/dev-portal/public/apigateway-js-sdk

Maestro – Command Line Interface

 28

 //This is where you define the body of the request

};

var additionalParams = {

 //If there are any unmodeled query parameters or headers that need to be sent with

the request you can add them here

 headers: {

 param0: '',

 param1: ''

 },

 queryParams: {

 param0: '',

 param1: ''

 }

};

apigClient.methodName(params, body, additionalParams)

 .then(function(result){

 //This is where you would put a success callback

 }).catch(function(result){

 //This is where you would put an error callback

 }

);

6.2.3 Using AWS IAM for Authorization

Maestro SDK is protected with the AWS IAM role. To create a client for work with SDK methods, we use
temporary credentials got during authentication.

To initialize the SDK with AWS credentials, use the code below. Note, if you use credentials all requests
to the API will be signed. This means you will have to set the appropriate CORS accept-* headers for
each request.

var apigClient = apigClientFactory.newClient({

 accessKey: 'ACCESS_KEY',

 secretKey: 'SECRET_KEY',

 sessionToken: 'SESSION_TOKEN', //OPTIONAL: If you are using temporary credentials

you must include the session token

 region: 'us-east-1' // OPTIONAL: The region where the API is deployed (e.g. eu-

west-1, us-west-2). Defaults to us-east-1.

});

Usage example

client['googleMetricsGraphGet']({'availabilityZone': 'eu-central-1a', 'instanceId':

'i-1234ffbd569e61234', 'region': 'AWS-EU-CENTRAL-1', 'range': 'WEEK', 'tenant': 'AWS-

EPMC-EOOS', 'metricName': 'CPU_UTILIZATION'}).then((data) => / *processing code* /));

Maestro – Command Line Interface

 29

6.3 AUTHENTICATION ALGORITHM

6.3.1 Authentication with Corporate SSO

Maestro3 API can be integrated with any corporate SSO. So, after running the respective command to login

with SSO, an authentication algorithm is as follows:

1. The request is sent to the API through the lambda_maestro_auth.

2. API connects to the corporate SSO and requests the information about the projects and position

level of the user.

3. The lambda_maestro_auth generates the token with the following parameters:

• Temporary user credentials for AWS IAM user (expire in 1 hour)

• Project/ projects

• Position level

When the user passes the authentication, the temporary credentials are shown as HTTP Headers in each

user’s request to Maestro3 API.

6.3.2 Authentication with Google

Another way to authenticate a user is to use Google authentication process. Maestro3 API is integrated

with Google and provides the Google OAuth authentication. After running the respective command,

Maestro3 API provides a user with the permissions to use the default tenants configured on Maestro

environment. The temporary credentials are sent for the access to Maestro3 API.

6.4 HTTP HEADER

This header is generated automatically for any generated AWS API Gateway SDK is placed at the

beginning of each HTTP request.

In case you need to work without provided API Gateway generated SDK, please see the detailed

information in the Using Temporary Security Credentials section on the AWS web-site.

authority:

plkjp4b6q2.execute-api.eu-central-1.amazonaws.com

:method:

POST

:path:

/prod/components/toolbar

:scheme:

https

accept:

application/json

accept-encoding:

gzip, deflate, br

accept-language:

ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,uk;q=0.6

authorization:

AWS4-HMAC-SHA256 Credential=ASIAIWAFQAJWQSDILX7A/20180427/eu-central-1/execute-

api/aws4_request, SignedHeaders=accept;content-type;host;x-amz-date,

Signature=deda30b25b388da12fceaad93c5deb68381ff21ef51d34e84160e7ab2074c6c4

content-length:

39

content-type:

https://developers.google.com/identity/protocols/OAuth2
https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html#UsingTemporarySecurityCredentials

Maestro – Command Line Interface

 30

application/json

origin:

https://maestro3.tools

referer:

https://maestro3.tools/home

user-agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/65.0.3325.181 Safari/537.36

x-amz-date:

20180427T125923Z

x-amz-security-token:

Ago0000Z2luEGEaDGV1LWNlbnRyYWwtMSKAAmHALTkHEWXb7Hw0SlgEcg/C7WWmBHiTQlk/vHDLmhmRy9ylh5lk33S3xTv

T3cp4FH2p+dMl90nJRyV60V0RA6NHEnZ672h5+9GIujxeumvwqErodQo+Y8gOM7UvJ3QL3EenxI4fA/M1wqKFvfC2s3M7z

vP5UBGwiLkZ6OYSUNTXXBdRz2tUB6cgC/RLLhgyR+TKoWpDiLhLdTp1bNBGLmBP1B7Mx5rqbuqEYO0xKJGsaS6NUls8s8n

IXYHvdWMIAm91sfM1pnOTgaJjRmfPnoyLfZlSfid48B7fAbEDxmNPCM4FS7/1PCGxs0Bw1+oI189AfoUUQeZ9fVg+z/8Br

b4q+AQIpv//////////ARAAGgw1NDI4MjY4MDEwNjMiDIElOI52o/A9kEMT9SrMBF++PemrRVwqZXp5PV8lXKzieEJmaGW

TfiXIjVJZeI5majcF3r0DN0DnHUQqxj+gUpRl2T5Beq7N0BFx2OL2Klo934TN1MHXg0g9cBpHZpID55R+PUyIXgqe1z1NG

yxdP6+wKUS/2L9VXLYKUFT06twSE5iHSCLtN01ZnUOBVpb6G1pZuhqrIOJt0Rlugn3SFvL6Mse6lzWgQRo7Jq49d8N4GG4

bdDUUfrydPYaBFdgW9SS9/kKoRdfEVrAeJAZrLOMQpRIJJBG3kxR8SAWVmSRaXoa8o9jC6kh36m2ieGoYMNu8igpn0T9Zx

E4XYdfuFn21RzlN2HCJY7m50fvv6TUJ9Gl7/NEux6ySQ3rUTCXSL/XiylhII9cJe5L5xq+/mCdHgEZfkW7Ar2SxwB799ua

ASQ3pdEfKSeRf181HjtlRqCUTnD4NB+KYz9448/KB3swMA8BG9kdht2bPQc1jtnZHOQuiPAFbF3iSbris41Hf/X9NEZ4NW

AtfVnzYLgWbJySPR8NjP66oFwgXzuOwYMEtX9IeJlqK5Ru82B8ZbnnnWcmQq54hPyBgnHMP8snYjUjkgRkdi5RKqPO413N

PGmIFXXK7W7QDkr9Kkp0Uhdv7J15D7SloZZR6wTKo/q9BmKXoFPC6uI/kmaMByLfsga+PzB6xTZ0DSju9Sh92RSQ12iWma

bKqUc6mMHhGgvnaAukzAOv2uXFe+HpCIDWjuhWAdYPXb6tZkif7inWIz2QWgDVtFpTRfSSRQNLrIx50Ayt32Ze1b801geq

9FDCQvYzXBQ==

You can find the detailed description of the HTTP methods, API resource identifiers, JS SDK methods, and

related Lambda functions in the Lambda API Developer’s Guide.

Maestro – Command Line Interface

 31

ANNEX A – ANSIBLE CLIENT

ANSIBLE CLIENT

Ansible is the most popular open source automation tool on GitHub. It is an automation tool used to

configure systems, deploy software, and orchestrate more advanced tasks such as continuous

deployments or zero downtime rolling updates.

In Maestro3 solution, Ansible is introduced via the respective wizard on the Main Dashboard.

The wizard allows to generate an Ansible client for the selected region and tenant. The result will be

provided as a downloadable zip, containing the dynamic inventory files.

DOWNLOADING ANSIBLE CLIENT

In order to download Ansible Client perform the following steps:

1. Start the Ansible Client wizard from the main Maestro3 Dashboard.

2. Specify tenant and region for which you want to generate the Ansible Client parameters and click

the Next button.

3. In the next window you can review the properties of the file to be downloaded. Click the

Download button to proceed.

4. The downloaded package will be stored in the Downloads folder of your computer.

EXECUTING ANSIBLE CLIENT

To configure Ansible Client in order to get the inventory file, follow the instructions provided in the

readme.md file from the downloaded package.

The following software should be installed on the machine where the Ansible Client will be executed:

• Python3 v3.7.1 or later

• pip v19.3.1 or later

• virtualenv v16.1.0 or later

In the current revision of Ansible Client (3.2.100.46) only the guide for Linux systems is present in the

readme.md file. The flow of work for Linux and Windows is described below in this instruction.

For Linux

1. Navigate to AnsibleClient folder using terminal

2. Create virtualenv using the command

virtualenv -p python3 .venv

Your OS may have no configured python3 alias. To configure it properly please follow the

instructions by link: https://realpython.com/installing-python/ .

3. Activate virtualenv with the command source .venv/bin/activate

4. Install requirements from the requirements.txt file with command

pip install -r requirements.txt

5. Edit client.config file by providing AWS credentials from the environment.

https://realpython.com/installing-python/

Maestro – Command Line Interface

 32

These credentials should have permissions to invoke lambda function (‘lambda:InvokeFunction’).

#Maestro3 ansible client config

#Wed Feb 19 10:33:54 UTC 2020

aws_secret_access_key=*******************************

clientId=*******************************

cache.max.age=300

aws_access_key_id=*******************************

lambda.name=autoconf_ansible_meta

lambda.region=eu-central-1

region=AWS-AP-NORTHEAST

tenant=AWS-EPMC-ACM3

6. Save the file.

7. Execute the command python m3_inventory.py

8. This result will be returned:

(.venv) ➜ m3-AnsibleClient-d20c python m3_inventory.py

Ansible DI file has been created by path /Users/user/Downloads/m3-

AnsibleClient-d20c/AWS-EPMC-ACM3.json

9. Your Ansible inventory file is ready and is stored in a file located by path returned in output by

m3_inventory.py script. In the example this is /Users/user/Downloads/m3-AnsibleClient-

d20c/AWS-EPMC-ACM3.json.

For Windows

1. Navigate to AnsibleClient folder using cmd.

2. Check the version of the python. Execute ‘python’:

(venv) C:\Users\Daryna_kozub\Desktop\m3-AnsibleClient-ffe7>python

Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

3. If the version of python is higher than 3.7.0 everything is ok. If the version is less, install

Python3.7+ and use the alias of python3.7 while creating the virtualenv using the command

virtualenv -p python3.7 venv

4. Create virtualenv with the command virtualenv venv

5. Activate virtualenv using the command .\venv\Scripts\activate.bat

6. Install requirements using the command pip install -r requirements.txt

7. Edit client.config file by providing AWS credentials from the environment. These credentials

should have permission to invoke lambda function (‘lambda:InvokeFunction’).

8. Save the file.

9. Execute m3_inventory.py script using the command python m3_inventory.py

(venv) C:\Users\Daryna_kozub\Desktop\m3-AnsibleClient-ffe7>python

m3_inventory.py

Ansible DI file has been created by path C:\Users\Daryna_kozub\Desktop\m3-

AnsibleClient-ffe7/AWS-EPMC-ACM3.json

10. The result has been created and saved to AWS-EPMC-ACM3.json file.

Maestro – Command Line Interface

 33

TABLE OF FIGURES

Figure 1 – Maestro3 components scheme ... 6

Figure 2 – Maestro3 CLI structure ... 9

Figure 3 – Maestro Java SDK structure ... 14

Figure 4 – Init script used by Chef ... 20

Figure 5 – Ansible and Dynamic Inventory flow ... 22

Maestro – Command Line Interface

 34

VERSION HISTORY

Version Date Summary

1.5 July 11, 2020 Added information about Ansible and Chef

1.4 May 18, 2020 Added information about the Terraform provider

1.3 March 2, 2019 Reviewed and updated the SDK section

1.2 December 5, 2019 Added information about Admin CLI

1.1 July 05, 2019 Added information about Lambda API

1.0 April 1, 2019 Initially published

